Gon't ever let someone tell you that you can't do something. Not even me. You got a dream, you gotta protect it. When people can't do something themselves, they're gonna tell you that you can't do it. You want something, go get it. Period. " ~ Will Smith (The Pursuit of Happiness, film)

BELIEVING In **Yourself** is The first Secret to SUCCESS ...

Introduction to SEM – Using the Partial Least Squares (PLS)

Professor T. Ramayah Room 118, Level 1, School of Management, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia. Tel: 604-653 3888 ext 3889 Fax: 604-657 7448 Email: ramayah@usm.my ramayah@gmail.com

Publish or Perish

"Enforcing the publish or perish rule, Dean McWit?"

Structural Equations Modeling

- Structural Equations Modeling . . . is a family of statistical models that seek to explain the relationships among multiple variables.
- It examines the "structure" of interrelationships expressed in a series of equations, similar to a series of multiple regression equations.
- These equations depict all of the relationships among constructs (the dependent and independent variables) involved in the analysis.
- Constructs are unobservable or latent factors that are represented by multiple variables.
- Called 2nd Generation Techniques

1st vs 2nd Generation Technique

	Primarily exploratory	Primarily confirmatory
1st Generation Techniques	 multiple regression logistic regression analysis of variance cluster analysis exploratory factor analysis 	 correspondence analysis
2nd Generation Techniques	PLS-SEM	CB-SEM, including CFA

Structural Equations Modeling

Distinguishing Features of SEM

- Compared to 1st Generation Techniques
 - It takes a confirmatory rather than exploratory
 - Traditional methods incapable of either assessing or correcting for measurement errors
 - Traditional methods use observed variables, SEM can use both unobserved (latent) and observed variables
 - Testing in one complete model

Components of Error

- Observed score comprises of 3 components (Churchill, 1979)
 - True score
 - Random error (ex; caused by the order of items in the questionnaire or respondent fatigue) (Heeler & Ray, 1972)

Systematic error such as method variance (ex; variance attributable to the measurement method rather than the construct of interest) (Bagozzi et al., 1991)

SEM

SEM, as a second-generation technique, allows the simultaneous modeling of relationships among multiple independent and dependent constructs (Gefen, Straub, & Boudreau, 2000). Therefore, one no longer differentiates between dependent and independent variables but

distinguishes between the exogenous and endogenous latent variables, the former being variables which are not explained by the postulated model (i.e. act always as independent variables) and the latter being variables that are explained by the relationships contained in the model. (Diamantopoulos, 1994, pp. 108)

- Exogenous constructs are the latent, multi-item equivalent of independent variables. They use a variate (linear combination) of measures to represent the construct, which acts as an independent variable in the model.
 - Multiple measured variables (x) represent the exogenous constructs.
- Endogenous constructs are the latent, multi-item equivalent to dependent variables. These constructs are theoretically determined by factors within the model.
 Multiple measured variables (y) represent the endogenous constructs.

Reflective (Scale) Versus Formative (Index) Operationalization of Constructs

A central research question in social science research, particularly marketing and MIS, focuses on the operationalization of complex constructs:

Are indicators causing or being caused by the latent variable/construct measured by them?

Indicators

Reflective

- X1 = Accommodate last minute request
- X2 = Punctuality in meeting deadlines
- X3 = Speed of returning phone calls
- Indicators must be highly correlated (Hulland, 1999)

Formative

- X1 = Job loss
- X2 = Divorce
- X3 = Recent accident
- Indicators can have +, or 0 correlation (Hulland, 1999)

View of Formative Measures

1. Composite (formative) constructs – indicators completely determine the "latent" construct. They share similarities because they define a composite variable but may or may not have conceptual unity. In assessing validity, indicators are not interchangeable and should not be eliminated, because removing an indicator will likely change the nature of the latent construct.

2. Causal constructs – indicators have conceptual unity in that all variables should correspond to the definition of the concept. In assessing validity some of the indicators may be interchangeable, and also can be eliminated.

Bollen, K.A. (2011), Evaluating Effect, Composite, and Causal Indicators in Structural Equations Models, *MIS Quarterly*, 35(2), 359-372.

Example: Reflective vs. Formative World View

Example: Reflective vs. Formative World View

How to Decide

DECISION RULES FOR DETERMINING WHETHER A CONSTRUCT IS FORMATIVE OR REFLECTIVE

	Formative model	Reflective model
 Direction of causality from construct to measure implied by the conceptual definition 	Direction of causality is from items to construct	Direction of causality is from con- struct to items
Are the indicators (items) (a) defining characteristics or (b) manifestations of the construct?	Indicators are defining characteristics of the construct	Indicators are manifestations of the construct
Would changes in the indicators/items cause changes in the construct or not?	Changes in the indicators should cause changes in the construct	Changes in the indicator should not cause changes in the construct
Would changes in the construct cause changes in the indicators?	Changes in the construct do not cause changes in the indicators	Changes in the construct do cause changes in the indicators
2. Interchangeability of the indicators/items Should the indicators have the same or similar content?	Indicators need not be interchangeable	Indicators should be interchangeable
Do the indicators share a common theme?	similar content/indicators need not share a common theme	similar content/indicators should share a common theme
Would dropping one of the indicators alter the conceptual domain of the construct?	Dropping an indicator may alter the conceptual domain of the construct	Dropping an indicator should not al- ter the conceptual domain of the construct
3. Covariation among the indicators	Not necessary for indicators to covary with each other	Indicators are expected to covary with each other
Should a change in one of the indicators be associated with changes in the other indicators?	Not necessarily	Yes
4. Nomological net of the construct indicators	Nomological net for the indicators may differ	Nomological net for the indicators should not differ
Are the indicators/items expected to have the same ante- cedents and consequences?	Indicators are not required to have the same antecedents and con- sequences	Indicators are required to have the same antecedents and conse- quences

How to Decide? Formative

- the indicators are viewed as defining characteristics of the construct,
- changes in the indicators are expected to cause changes in the construct,
- changes in the construct are not expected to cause changes in the indicators,
- the indicators do not necessarily share a common theme,
- eliminating an indicator may alter the conceptual domain of the construct,
- a change in the value of one of the indicators is not necessarily expected to be associated with a change in all of the other indicators,
- the indicators are not expected to have the same antecedents and consequences.

Reflective Measurement Models

- Direction of causality is from construct to measure
- Indicators expected to be correlated
- Dropping an indicator from the measurement model does not alter the meaning of the construct
- Takes measurement error into account at the item level
- Similar to factor analysis
- Typical for management and social science researches

 $x_1 = \lambda_1 \cdot \xi + \varepsilon_1$ $x_2 = \lambda_2 \cdot \xi + \varepsilon_2$ $x_3 = \lambda_3 \cdot \xi + \varepsilon_3$

Formative Measurement Models

- Direction of causality is from measure to construct
- Indicators are not expected to be correlated
- Dropping an indicator from the measurement model may alter alter the meaning of the construct
 - No such thing as internal consistency reliability
- Based on multiple regression
 - Need to take care of multicollinearity
- Typical for success factor research (Diamantopolous & Winklhofer, 2001)

Reflective Measurement Models

- Similar to Principal Component Analysis (PCA)
- Measurement errors are expected to be zero
- The latent variable has a variance of 1.
- Usually the latent variable is centered. For some applications such as customer satisfaction indices, the latent mean is calculated.
- The weights are calculated too.

Formative Measurement Models

- Multiple regression analysis is performed
- Measurement error at the construct level is expected to be zero
- The latent variable has a variance of 1.
- Usually the latent variable is centered. For some applications such as success factor studies, the latent mean is calculated.
- The correlation between the latent variable and its indicators (loadings) are calculated too.

Comparison between Reflective and Formative

Problems in Specification

Reflective measurement is most commonly used but in many cases a formative measurement would be appropriate

	Should be reflective	Should be formative	Total
Modelled as reflective	947 (65%)	456 (31%) (Type Lenor)	1403 (96%)
Modelled as formative	17 (1%) (Type II error)	41 (3%)	58 (4%)
Total	964 (66%)	497 (34%)	1461 (100%)

32% of constructs have been measured incorrectly

Data bases are the Top 3 German- and Top 4 English-language journals:

 JARVIS/BURKE/PODSAKOFF (2003): Journal of Consumer Research, Journal of Marketing, Journal of Marketing Research, Marketing Science (1977 – 2000): N = 1,192

 FASSOTT (2006): Zeitschrift für betriebswirtschaftliche Forschung, Zeitschrift für Betriebswirtschaft, Die Betriebswirtschaft (X - 2003): N = 269

SEM - Variations

 CB-SEM (Covariance-based SEM) – objective is to reproduce the theoretical covariance matrix, without focusing on explained variance.

 PLS-SEM (Partial Least Squares SEM) – objective is to maximize the explained variance of the endogenous latent constructs (dependent variables).

Two approaches to SEM

Covariance based

- EQS, <u>http://www.mvsoft.com/</u>
- AMOS, <u>http://www-01.ibm.com/</u>
- SEPATH, <u>http://www.statsoft.com/</u>
- LISREL, <u>http://www.ssicentral.com/</u>
- MPLUS, <u>http://www.statmodel.com/</u>
- Iavaan, <u>http://lavaan.ugent.be/</u>

• Ωnyx, <u>http://onyx.brandmaier.de/</u>

Two approaches to SEM

Variance Based SEM

- Smart PLS, <u>http://www.smartpls.de/forum/</u>
- PLS-GUI, <u>https://sem-n-r.wistia.com/projects/plgxttovlw</u>
- PLS Graph, <u>http://www.plsgraph.com/</u>
- WarpPLS, <u>http://www.scriptwarp.com/warppls/</u>
- Visual PLS, http://fs.mis.kuas.edu.tw/~fred/vpls/start.htm
- PLS-GUI, <u>http://www.rotman-</u> baycrest.on.ca/index.php?section=84
- SPAD-PLS,

http://spadsoft.com/content/blogcategory/15/34/

GeSCA, http://www.sem-gesca.org/

Why PLS?

- Like covariance based structural equation modeling (CBSEM), PLS is a latent variable modeling technique that incorporates multiple dependent constructs and explicitly recognizes measurement error (Karim, 2009)
- In general, two applications of PLS are possible (Chin, 1998a): It can either be used for theory confirmation or theory development. In the latter case, PLS is used to develop propositions by exploring the relationships between variables.

Reasons for using PLS

- Researchers' arguments for choosing PLS as the statistical means for testing structural equation models (Urbach & Ahleman, 2010) are as follows:
 - PLS makes fewer demands regarding sample size than other methods.
 - PLS does not require normal-distributed input data.
 - PLS can be applied to complex structural equation models with a large number of constructs.
 - PLS is able to handle both reflective and formative constructs.
 - PLS is better suited for theory development than for theory testing.
 - PLS is especially useful for prediction

Sample Size – Rule of 10

- With respect to PLS, the literature frequently uses the "10 times" rule of thumb as the guide for estimating the minimum sample size requirement.
- This rule of thumb suggests that PLS only requires a sample size of 10 times the most complex relationship within the research model.
- The most complex relationship is the larger value between (1) the construct with the largest number of formative indicators if there are formative constructs in the research model (i.e., largest measurement equation (LME)) and (2) the dependent latent variable (LV) with the largest number of independent LVs influencing it (i.e., the largest structural equation (LSE)).

Condition

- Researchers have suggested that the "10 times" rule of thumb for determining sample size adequacy in PLS analyses only applies when certain conditions, such as strong effect sizes and high reliability of measurement items, are met.
- PLS is used to test the research model, assuming certain conditions are met (e.g., adequate effect sizes, a sufficiently large number of items per construct, and highly reliable constructs).

Questionnaire Design

- The construct scores of the latent variables in PLS are created by aggregating indicator items that involve measurement errors, PLS estimates of construct scores are biased and are only consistent under the conditions of "consistency at large", which refer to a large number of items per construct, high communality, and large sample sizes (Wold, 1982, p. 25).
- Increasing the number of indicators per construct is one way to reduce the bias in the parameter estimate for reflective constructs in PLS, researchers can consider including a large number of items for reflective constructs in the survey questionnaire if they anticipate that PLS may be used in the analysis stage.
- It should be noted that researchers often face a tradeoff between response rate and questionnaire length, and that increasing the number of items per construct can adversely affect a survey's response rate.

Hair et al. (2013)

- PLS-SEM is advantageous when used with small sample sizes (e.g., in terms of the robustness of estimations and statistical power; Reinartz et al., 2009).
- However, some researchers abuse this advantage by relying on extremely small samples relative to the underlying population.
- All else being equal, the more heterogeneous the population in a structure is the more observations are needed to reach an acceptable sampling error level.

Sample Size (Green, 1991)

	Sample sizes based on power analysis		
Number of predictors		Effect size	
	Small	Medium	Large
1	390	53	24
2	481	66	30
3	547	76	35
4	599	84	39
5	645	91	42
6	686	97	46
7	726	102	48
8	757	108	51
9	788	113	54
10	844	117	56
15	952	138	67
20	1066	156	77
30	1247	187	94
40	1407	213	110

Choice

- Overall, PLS can be an adequate alternative to CBSEM if the problem has the following characteristics (Chin 1998b; Chin & Newsted 1999):
 - The phenomenon to be investigated is relatively new and measurement models need to be newly developed,
 - The structural equation model is complex with a large number of LVs and indicator variables,
 - Relationships between the indicators and LVs have to be modeled in different modes (i.e., formative and reflective measurement models),3
 - The conditions relating to sample size, independence, or normal distribution are not met, and/or
 - Prediction is more important than parameter estimation.
Selection

- The decision between these approaches is whether to use SEM for theory testing and development or for predictive applications (Anderson & Gerbing, 1988)
- In situations where prior theory is strong and further testing and development are the goal, covariance-based full-information estimation methods are more appropriate.

Justification

- However, for application and prediction, when the phenomenon under research is relatively new or changing, or when the theoretical model or measures are not well formed, a PLS approach is often more suitable (Chin& Newsted,1999)
- In addition, Chin (2010) states "there are other instances beyond initial exploratory stages that PLS is well suited" (p. 660)

Incremental Study

- For example, when the research has an interactive character. This is the case of an incremental study, which is initially based on a prior model but <u>new</u> <u>measures</u> and <u>structural paths</u> are then introduced into it.
- In this respect these statements are confirmed by the study of Reinartz et al. (2009): "PLS is the preferable approach when researchers focus on prediction and theory development, our simulations show that PLS requires only about half as many observations to reach a given level of statistical power as does ML-based CBSEM" (p. 334).

Choice

Choice

Figure 5: Framework for applying PLS in structural equation modeling.

Comparison

Criteria	PLS	CBSEM	
Objective	Prediction-oriented	Parameter-oriented	
Approach	Variance-based	Covariance-based	
Assumption	Predictor specification (nonparametric)	Typically multivariate normal distribution and independent observations (parametric)	
Parameter estimates	Consistent as indicators and sample size increase (i.e., consistency at large)	Consistent	
Latent variable scores	Explicitly estimated	Indeterminate	
Epistemic relationship between an LV and its measures	Can be modeled in either formative or reflective mode	Typically only with reflective indicators. However, the formative mode is also supported.	
Implications	Optimal for prediction accuracy	Optimal for parameter accuracy	
Model complexity	Large complexity (e.g., 100 constructs and 1,000 indicators)	Small to moderate complexity (e.g., less than 100 indicators)	
Sample size	Power analysis based on the portion of the model with the largest number of predictors. Minimal recommendations range from 30 to 100 cases.		
Type of optimization	Locally iterative	Globally iterative	
Significance tests	Only by means of simulations; restricted validity	Available	
Availability of global Goodness of Fit (GoF) metrics	Are currently being developed and discussed	Established GoF metrics available	

Pre-testing

- Pretesting (See Hunt et al. 1982)
 - What items?
 - Length, layout, format, number of lines for replies, sequencing
 - Individual questions, respondents hesitate
 - Dummy tables and analysis (dry run)
 - What method?
 - Personal interviews, phone, and mail
 - Debriefing (after) or protocol (during)?

Pre-testing

- Who should do?
 - Best interviewers
- Who are the subjects?
 - Respondents who are as similar as possible
 - Representative vs convenience
- How large a sample?
 - Vary from 12, 20, 30 to 100

Pilot Test - Results

Scale	Number of items	Cronbach's Alpha
MLQ	28	.85
Consistency - OC	15	.79
Adaptability - OC	15	.61
Mission – OC	15	.82
Organizational Trust	9	
Psychological Empowerment	8	10
OCB	15	.81
Organizational Effectiveness	9	.69

Table 3.2. Cronbach's Alpha for the measures

Justification

3.5.4 Psychological Empowerment

PE was measured using the modified version of psychological empowerment of Spreitzer (1992, 1995b). This scale showed to have high Cronbach's alpha of .84 and .90 previously in Malaysian organization (Nik Azida Abd. Ghani, Tengku Ahmad Badrul Shah bin Raja Hussin and Kamaruzaman Jusoff. 2009). However, in the present plot study this scale showed extremely low validity and reliability. The validity values ranged from .06 to .44 as shown in Table A6 (Appendix A) with Cronbach's alpha of .10 which indicates low internal consistency between items. The researcher decided not to omit any item because psychological empowerment is an important mediating variable between leadership styles and OCB. Also in the main study, it was thought that with a bigger sample size, the reliability and validity of the scale would improve. All eight items were utilized for the main study to measure the level of empowerment employees reported in the final data collection (Table B4 Appendix B). Is this convert

Other Issues

- Non-Response
- Common Method Variance (CMV)
- Social Desirability
- Missing Value Imputation

Non-Response Bias

- The mail survey has been criticized for non-response bias. If persons who respond differ substantially from those who do not, the results do not directly allow one to say how the entire sample would have responded – certainly an important step before the sample is generalized to the population (Armstrong & Overton, 1977)
- Extrapolation methods are based on the assumption that subjects who respond less readily are more like non-respondents (Pace, 1939). "Less readily" has been defined as answering later, or as requiring more prodding to answer.

Non-Response Bias

- The most commonly recommended protection against non-response bias has been the reduction of nonresponse itself.
- Non-response can be kept under 30% in most situations if appropriate procedures are followed (Linsky, 1975).
- Another approach to the non-response problem is to sample non-respondents (Hansen & Hurwitz, 1946).
 For example, Reid (1942) chose a 9% subsample from his non-respondents and obtained responses from 95% of them.

Effect Size

- An effect size test as represented by the eta squared is necessary to determine whether statistical mean difference is truly adequate or is occurred by chance since large sample could enable very small differences to become statistically significant (Cohen, 1988; Samat, Ramayah, & Yusoff, 2008).
- The formula for calculating eta squared for t-test is as follows:

Eta² =
$$t^2$$

 $t^2 + (N1 + N2 - 2)$

Effect Size

• The formula for calculating **eta squared** for *One way ANOVA test* is as follows:

Eta² = <u>Sum of squares between-groups</u> Total sum of squares

- Using the guideline proposed by **Cohen (1988)**, the value of **eta squared** is interpreted as follows:
 - **0.01** = small effect
 - **0.06** = moderate effect; and
 - **0.14** = large effect size

What is Common Method Variance?

- Common method variance needs to be examined when data are collected via self-reported questionnaires and, in particular, both the predictor and criterion variables are obtained from the same person (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003).
- Podsakoff and Todor (1985) also noted that: "Invariably, when self-reported measures obtained from the same sample are utilized in research, concern over same-source bias or general method variance arise" (p. 65).

Testing Common Method Variance

- According to Podsakoff and Organ (1986), common method bias is a serious threat if a single latent factor accounts for the majority of the explained variance. The presence of common method bias can be detected if
 - i. a single factor emerges from the factor analysis, or
 - ii. one general factor accounts for the majority of the covariance among the measures (Podsakoff et al., 2003).

Common Method Variance

 Second, we can also assess CMV by looking at the correlation matrix, common method bias is usually evidenced by extremely high correlations (r > 0.90) (Bagozzi et al., 1991).

Common Method Variance

Social Desirability Measure

- Fischer and Fick (1993) shortened version (X1) of Crowne and Marlowe (1960) Social Desirability Scale
- I like to gossip at times
- There have been occasions where I took advantage of someone
- I'm always willing to admit it when I made a mistake
- I sometimes try to get even rather than forgive and forget
- At times I have really insisted on having things my own way
- I have never been irked when people expressed ideas very different from my own
- I have never deliberately said something that hurt someone's feeling

Testing Common Method Variance

- Harman's Single factor test
 - General Factor a1 a2 a3 b1 b2 b3
- Using Social Desirability

Explanation CMV Example

- We performed two tests to examine the common method bias. First, we performed an exploratory factor analysis by entered all measurement items, the results showed that the largest variance explained by an individual factor was 36.14%.
- Podsakoff and Organ (1986) claimed that if the variables all load on one factor or one factor explains the majority of the variance, common method variance may be a problem. The results show that neither a single factor nor a general factor accounts for the majority of the covariance in the measures.

Explanation

 Second, we performed a confirmatory factor analysis by modelling all items as the indicators of a single factor, and the results show a poor fitness. Method biases are assumed to be substantial if the hypothesized model fits the data (Malhotra, Kim, & Patil, 2006). Thus, the results of both tests indicate that common method bias is not a significant problem for the current study.

Missing Value Imputation

Traditional

- No replacement
- Mid point of the scale
- Random number
- Mean value of the other respondents
- Mean value of the other responses

Current

- FIML
- EM

MI

Missing Value Imputation

🖬 Missing Data Imputation.sav [DataSet1] - IBM SPSS Statistics Data Editor

C DEAKIN FINAL EXERC...

👩 Microsoft PowerPoint ...

🛃 start

🕙 Doctorate Support Gr...

File Edit View Data Transform Analyze Graphs Utilities Add-ons Window Help -----All all a Transie Andre -----Reports ь Descriptive Statistics V7 V8 V9 V10 V11 V12 Missing Value Analysis Tables ariables 5 5 × Compare Means ь Quantitative Variables: ID. $\vee 1$ Patterns. 5 5 AD General Linear Model - V1 1 Distribution 4 2 Descriptives_ Generalized Linear Models 2 2 V2 Normal 5 5 Mixed Models V3 З з Estimation C Mixed normal 4 Correlate V4 5 4 4 Listwise Mixture proportion Regression V5 5 4 5 6 Pairwise Standard deviation ratio. Loglinear J V6 6 5 2 6 V.EM O Student's t Classify ¥ V7 7 7 2 4 Dimension Reduction V8 Regression -8 8 5 5 Scale V9 Variables 9 9 V10 2 3 Nonparametric Tests Maximum iterations: 25 10 10 EM. - V11 Forecasting 1 1 11 11 V Save completed data V12 Survival 2 2 12 12 Create a new dataset V13 Multiple Response 5 5 13 13 V14 Dataset carrie: 🚰 Missing Value Analysis. 5 14 14 5 ¥15 Write a new data file Multiple Imputation ь 15 15 C'Documents a ... Wo Missing say 5 5 Quality Control File. Categorical Variables: 16 16 🖉 ROC Cur<u>v</u>e. 5 2 17 17 Amos 19. 2 Continue Cancel Help 3 18 18 2 2 19 19 5 5 5 6 Missing Value Analysis: Save to File 20 20 5 4 21 21 з 4 4 Look in: DEAKIN FINAL EXERCISES & DATA . 前前任日 22 22 6 6 6 5 5 23 23 4 🛅 Outliers and Bootstrapping 📴 Data 6.sav * 24 24 2 2 G CFA Deta.sav Deta No Missing sev -1 Data 1.sav 25 25 5 5 Deta sav 5 Data 2.sav EFA say 5 6 6 26 26 Data 3.sav 🔁 Missing Data Imputation sav 27 27 5 5 5 🔁 Data 4.sav No Missing say 28 28 5 5 5 Data 5.sav Self Exercise.sav 29 29 5 5 5 30 30 5 5 4 File name lo Missing sa Save 31 31 4 4 4 Maximum Categories: 05 32 32 2 2 2 Cancel Save as type: SPSS Statistics (*.sav) 33 33 5 5 5 Case Labels: Help 34 34 4 4 4 Store File To Repository. 35 35 з З З **Use All Variables** • 4 5 5 5 4 5 5 Variable View OK . Paste Reset Cancel Help Data View 3 3 4 4 4 4 IBM SPSS Statistics Processor is ready Missing Value Analysis.

🌆 Missing Data Imputati.

_ 7

EN < 11:29 AM

The 2 Step Approach

- A structural equation modeling process requires two steps:
 - 1. building and testing a measurement model, and
 - 2. building and testing a structural model.
- The measurement model serves to create a structural model including paths representing the hypothesized associations among the research constructs.

Modeling in PLS

Brief Instructions: Using SmartPLS

- 1. Load SmartPLS software click on 😂 smartpls
- 2. Create your new project assign name and data.
- 3. Double-click to get Menu Bar.
- 4. Draw model see options below:
 - Insertion mode = •
 - Selection mode =
- - Connection mode = ____
- 5. Save model.
- 6. Click on calculate icon @ and select PLS algorithm on the Pull-Down menu. Now accept the default options by clicking Finish.

Confirmatory Factor Analysis (CFA)

- Confirmatory Factor Analysis (CFA) . . . is similar to EFA in some respects, but philosophically it is quite different.
- With CFA, the researcher must specify both the number of factors that exist within a set of variables and which factor each variable will load highly on <u>before</u> results can be computed.
- So the technique does not assign variables to factors. Instead the researcher must be able to make this assignment before any results can be obtained.
- SEM is then applied to test the extent to which a researcher's apriori pattern of factor loadings represents the actual data.

Review of and Contrast with Exploratory Factor Analysis

- EFA (exploratory factor analysis) explores the data and provides the researcher with information about how many factors are needed to best represent the data. With <u>EFA</u>, all measured variables are related to <u>every factor</u> by a factor loading estimate.
- Simple structure results when each measured variable loads <u>highly</u> on only one factor and has smaller loadings on other factors (i.e., loadings < .40).
- The distinctive feature of EFA is that the factors are derived from statistical results, not from theory, and so they can only be named after the factor analysis is performed.
- EFA can be conducted without knowing how many factors really exist or which variables belong with which constructs. In this respect, CFA and EFA are not the same.

Measurement Model and Construct Validity

- One of the biggest advantages of CFA/SEM is its ability to assess the construct validity of a proposed measurement theory. Construct validity ... is the extent to which a set of measured items actually reflect the theoretical latent construct they are designed to measure.
- Construct validity is made up of two important components:
 - 1. Convergent validity three approaches:
 - Factor loadings.
 - Variance extracted.
 - Reliability.
 - 2. Discriminant validity

Assessing Measurement Model

- Elements of the model are separately evaluated based on certain quality criteria's:
 - Reflective measurement models
 - Formative measurement models
 - Structural model

Measurement Model

- Reliability
- Validity

Structural Model

- Assessment of effects
- Assessment of prediction quality

Validation of the measurement models is a requirement for assessing the structural model

Effect of Errors

What is the effect of error terms on measurement:

- value as measured
- X_t true value

• *X_m*

 \mathcal{E}_{s}

- ε error term
 - ε_r random term
 - systematic term

Consequences

Assessment of Reflective Models

Internal Consistency reliability

- Composite reliability
- Cronbach's alpha
- Indicator reliability
 - Squared loadings
- Convergence validity
 - Average Variance Extracted (AVE)

Discriminant Validity

- Fornell-Larcker Criterion
- Cross loadings

Internal Consistency (Cronbach α)

Cronbach's alpha :
$$\alpha = \left(\frac{N}{N-1}\right) * \left(1 - \frac{\sum_{i=1}^{N} \sigma_i^2}{\sigma_t^2}\right)$$

N = number of indicators assigned to the factor

 σ^2_i = variance of indicator **i**

 σ_t^2 = variance of the sum of all assigned indicators' scores

- *i* = flow index across all reflective measurement model
- Measures the reliability of indicators
- The value is between 0 and 1
- In early phase 0.7 acceptable, but in later phases values of 0.8 or 0.9 is more desirable (Nunnally, 1978)

Internal Consistency (Dhillon-Goldstein Rho)

Composite reliability(
$$\rho$$
) = $\frac{(\sum_{i} \lambda_{ij})^2}{(\sum_{i} \lambda_{ij})^2 + \sum_{i} \operatorname{var}(\varepsilon_{ij})}$

 λ_i = loadings of indicator *i* of a latent variable

- ε_i = measurement error of indicator *i*
- *i* = flow index across all reflective measurement model
- Measures the reliability of indicators
- The value is between 0 and 1
- Composite reliability should be 0.7 or higher to indicate adequate convergence or internal consistency (Gefen et al., 2000).

Indicator Reliability

- The indicator reliability denotes the proportion of indicator variance that is explained by the latent variable
- The value is between 0 and 1.
- When indicator and latent variables are standardized, the indicator reliability equals the squared indicator loading
- Normally should be at least 0.25 to 0.5
- However, reflective indicators should be eliminated from measurement models if their loadings within the PLS model are smaller than 0.4 (Hulland 1999, p. 198).

Average Variance Extracted (AVE)

$$AVE = \frac{\sum_{i} \lambda_{i}^{2}}{\sum_{i} \lambda_{i}^{2} + \sum_{i} \operatorname{var}(\varepsilon_{i})}$$

 λ_{i}^{2} = squared loadings of indicator *i* of a latent variable var(ε_{i}) = squared measurement error of indicator *i*

- Comparable to the proportion of variance explained in factor analysis
- Value ranges from 0 and 1.
- AVE should exceed 0.5 to suggest adequate convergent validity (Bagozzi & Yi, 1988; Fornell & Larcker, 1981).

Discriminant Validity

- Fornell & Larcker (1981) criterion
 - A latent variable should explain better the variance of its own indicators than the variance of other latent variables
 - The AVE of a latent variable should be higher than the squared correlations between the latent variable and all other variables. (Chin, 2010; Chin 1998b; Fornell & Larcker, 1981).

Cross loadings

The loadings of an indicator on its assigned latent variable should be higher than its loadings on all other latent variables.

Discriminant Validity

Table 4 Discriminant validity of constructs

Constructs	1	2	3	4	5
1. Collaboration	0.703				
2. Commitment	0.051	0.720			
3. Communication	0.184	0.014	0.695		
4. Performance	0.146	0.078	0.226	0.742	
5. Trust	0.022	0.197	0.017	0.008	0.543

Diagonals (in **bold**) represent the average variance extracted while the other entries represent the squared correlations

Discriminant Validity

-0	Collaboration	Commitment	Communication	Performance	Trust
Collext1	0.889	0.063	0.375	0.343	0.101
Collext2	0.689	0.234	0.304	0.227	0.030
Collext3	0.919	0.267	0.393	0.375	0.212
Commit1	0.111	0.734	0.138	0.264	0.350
Commit4	0.239	0.949	0.089	0.239	0.411
Communl	0.263	0.201	0.758	0.467	0.210
Commun2	0.380	0.130	0.865	0.380	0.082
Commun3	0.407	0.006	0.874	0.376	0.073
Perform1	0.219	0.243	0.371	0.805	0.099
Perform2	0.393	0.228	0.480	0.917	0.100
Perform3	0.337	0.263	0.366	0.860	0.042
Trust2	0.112	0.296	0.053	0.040	0.696
Trust3	0.057	0.326	0.169	0.222	0.707
Trust4	0.131	0.363	0.105	0.024	0.804

Table 1 Loadings and cross loadings

Bold values are loadings for items which are above the recommended value of 0.5

Multicollinearity

Table 4.2 Means, standard deviations and inter-correlations.

Variables	М	SD	Transform	Transact	Consistency	Adapt	Mission	Trust	Empower	OCB	Effective
Transformational	81.96	14.17	\bigcirc								
Transactional	35.93	6.63	(¹ 92))							
Consistency	49.94	9.11	.72	.69 ^{°°}	-						
Adaptability	50.60	8.46	.71	.68	(81)					
Mission	51.80	9.05	.72	.67**	.80	.83					
Trust	47.65	7.86	56	49	.54	.55	.58				
Empowerment	40.30	6.02	.51	.49	.48	.59	.53	.42			
ОСВ	79.61	11.35	62	60	.61	.60	.64	.58	.57		
Effectiveness	43.58	8.26	.50	.48	.61"	.63	.60	.48	.54	.48	

Results

Table 4.3 Summary table of R Square for organizational effectiveness

Models	R Square	F	Beta	T	Sig.
Model 1	.01	1.60			.202
	Education Level	O_{1}	07	-1.5	(.146)
	Job Position	\sim	04	83	406
Model 2	.26	39.55			.000
/	Education Levei		10	-2.5	.013
	Job Position		.02	.58	.563
	Transformational		.40	3.9	.000
	Transactional		12	1.1	.251
Model 3	.44	49.65	5		.000

Justification

In this study MLQ was used to measure the two leadership styles namely transformational leadership and transactional leadership. Transformational leadership consisted of four dimensions namely idealized influence, inspirational motivation. intellectual stimulation and individual consideration. Transactional leadership on the other hand consisted of contingent reward, management by exception (active) and management by exception (passive). However, based on the present results from factor analysis, items of both transformational and transactional leadership styles loaded on the same construct indicating that respondents did not elearly differentiate between the transformational and transactional leadership styles. Therefore, this issue of the MLQ scale could be a limitation of this study and hence, it needs to be modified and clearer variations of the transformational and transactional scales developed. These recommendations are supported by Tejada. Scandura & Pillai (2001), who reported that a dimension of transactional leadership namely contingent reward is related to transformational leadership as much as it relates to transactional leadership. These

Reporting Measurement Model

Model Construct	Measurement Item	Loading	CR ^a	AVE ^b
Commitment	COMMIT1	0.686	0.856	0.601
	COMMIT2	0.767		
	COMMIT3	0.885		
	COMMIT4	0.751		
Communication	COMMUN1	0.842	0.873	0.696
	COMMUN2	0.831		
	COMMUN3	0.829		
Trust	TRUST1	0.580	0.759	0.527
	TRUST2	0.587		
	TRUST3	0.948		
Performance	PERFORM1	0.837	0.898	0.747
	PERFORM2	0.900		
	PERFORM2	0.853		

Presenting Measurement Items (Table)

Model Construct	Measurement Item	Standardized estimate	t-value
Commitment	COMMIT1	0.686	5.230**
	COMMIT2	0.767	6.850**
	COMMIT3	0.885	22.860**
	COMMIT4	0.751	6.480**
Communication	COMMUN1	0.842	20.628**
	COMMUN2	0.831	16.354**
	COMMUN3	0.829	15.011**
Trust	TRUST1	0.580	1.960*
	TRUST2	0.587	2.284**
	TRUST3	0.948	2.640**
Performance	PERFORM1	0.837	16.081**
	PERFORM2	0.900	33.456**
	PERFORM2	0.853	13.924**

t-values > 1.96* (p< 0.05); t-values > 2.58** (p< 0.01)

Assessment of Formative Measurement Models

Expert validity (Anderson & Gerbing, 1991)

$$p_{sa} = \frac{n_c}{N} \qquad c_{sv} = \frac{n_c - n_0}{N}$$

- Sa = substantive agreement
- Sv = substantive validity
- Indicator relevance
- Indicator significance
- Multicollinearity

External Validity

- Does the measure of a construct correlate highly with a <u>second, different</u> <u>measure</u> of the construct
- Does a construct behave within a <u>nomological</u> net as stated by theory?

Bootstrapping

Example: Bootstrapping

 Is there a correlation between IQ and a methodology re-examination result?

ID	IQ	MR
1	105	5.6
2	106	5
3	114	7.1
4	123	7.4
5	134	6.1
6	141	8.6
Corr (IQ,	MR) = 0.733	Is this significant?

Building the Bootstrap Samples

Sample	1		Sample 2	2		Sample 3	3		Sample 5	600	
ID	IQ	MR	ID	IQ	MR	ID	IQ	MR	ID	IQ	MR
6	141	8.6	3	114	7.1	2	106	5.0	6	141	8.6
4	123	7.4	3	114	7.1	2	106	5.0	4	123	7.4
3	114	7.1	1	105	5.6	2	106	5.0	 3	114	7.1
5	134	6.1	3	114	7.1	2	106	5.0	5	134	6.1
2	106	5.0	3	114	7.1	4	123	7.4	2	106	5.0
5	134	6.1	5	134	6.1	4	123	7.4	5	134	6.1
corr =	0.546		corr =	-0.060		corr =	1.000		corr = 0	0.546	

Standard deviation of corr = 0.277

$$t = 0.733 = 2.646$$

Comparison

•
$$t_{0.05}, t_{499} = 1.965$$

•
$$t_{0.01}, t_{499} = 2.586$$

Bootstrapping

- Use matrix X (n x m) of manifest variables
- Create bootstrap sub-samples
 - Need to set a minimum number (eg; 500 or more)
 - The dimension of bootstrapping subsample should be identical to the original data matrix (*n x m*)
 - Randomly select (with replacement) cases from the original matrix
 - Cases are drawn with a probability of 1/n from the original matrix (a certain case can be selected 0 to n times when creating a bootstrap subsample)

Bootstrapping

- The routine estimates the PLS path model for each subsample (depending on the n suggested)
- The bootstrapping procedures provides mean values for
 - weights in the inner model (structural)
 - weights in the outer model (measurement), and
 - outer (measurement) models factor loadings

Testing for Significance

$$H_0: \beta = 0$$
$$H_1: \beta \neq 0$$

$$t = \frac{b - B_{H_o}}{se_b}$$

- The test will give indication whether the relationship is significant ie; statistically different from zero
- This result is used in research reports
- In practice it does not matter if an insignificant relationship remains in the PLS path model or is eliminated.

Bootstrapping in SmartPLS

Example

■ Path USEFULNESS → ATTITUDE

- t-value 19.604 > $t_{m-1, 1-\alpha/2} = t_{499, 0.975} = 1.972$
- H0: $\beta = 0$ can be rejected
- Conclusion path differs from 0 in population.

Assessment of the Structural Model

- Path Coefficients
- Explained Variances
- Effect Sizes

Goodness of Fit (GOF)

- What is Goodness of Fit (GOF)?
- Goodness-of-fit (GoF) (Tenanhaus et al., 2005) is used to judge the overall fit of the model.
- GoF, which is the geometric mean of the average communality (outer measurement model) and the average R² of endogenous latent variables, represents an index for validating the PLS model globally, as looking for a compromise between the performance of the measurement and the structural model, respectively.
- GoF is normed between 0 and 1, where a higher value represents better path model estimations.

Assessing Goodness of Fit (GOF)?

Assessing Goodness of Fit (GOF)

$$GOF = \sqrt{\overline{R}^2} x$$
 Average Communality

Global validation of PLS models use these cut-off values (Wetzels et al. 2009):

•
$$GoF_{small} = 0.10$$

•
$$GoF_{medium} = 0.25$$

$$GoF = \sqrt{\overline{AVE} \times \overline{R}^2}$$

- $GoF_{large} = 0.36$
- Allows to conclude that the model used has better explaining power in comparison with the baseline model

Assessing R²

- According to Chin (1998b), R² values for endogenous latent variables are assessed as follows:
 - 0.67 substantial
 0.33 moderate
 0.19 weak
- Also path coefficients range between 0.20 0.30 along with measures that explain 50% or more variance is acceptable (Chin, 1998b)

Assessing R²

- According to Cohen (1988), R² values for endogenous latent variables are assessed as follows:
 - 0.26 substantial
 0.13 moderate
 0.02 weak
- Also path coefficients range greater than 0.1 is acceptable (Lohmoller, 1989)

Evaluating R² values

- The R² values should be high enough for the model to achieve a minimum level of explanatory power (Urbach & Ahlemann, 2010).
- Falk and Miller (1992) recommended that R² values should be equal to or greater than 0.10 in order for the variance explained of a particular endogenous construct to be deemed adequate.

Recommendations

- Hair et al. (2013) addressed the difficulty of providing rules of thumb for acceptable R² as it is reliant upon on the model complexity and the research discipline.
- While R² values of 0.20 are deemed as high in disciplines such as consumer behavior, R² values of 0.75 would be perceived as high in success driver studies (e.g., in studies that aim at explaining customer satisfaction or loyalty).
- Specifically, in scholarly research that focuses on marketing issues, R² values of 0.75, 0.50, or 0.25 for endogenous latent variables can, as a rough rule of thumb, be respectively described as substantial, moderate, or weak. (Hair et al., 2011; Hair et al., 2013).

Calculating Effect Size (f²)

 Effect size f² is not automatically given in PLS, we have to do manual calculation using the formula:

Effect size :
$$f^2 = \frac{R_{incl}^2 - R_{excl}^2}{1 - R_{incl}^2}$$

- According to Cohen (1988), f² is assessed as:
 - 0.02 small
 - 0.15 medium
 - 0.35 large

Presenting the results (Figure)

Presenting the results (Table)

 The t-values are generated using the bootstrapping with re-samples of 200 (Chin, 1998b)

	Relationship	Coefficient	t-value	Supported
H1	$SYS \rightarrow SAT$	0.23	2.588**	YES
H2	$IQ\toSAT$	0.17	1.725*	YES
H3	$SQ\toSAT$	0.24	2.645**	YES
H4	$SAT \to INT$	0.38	3.895**	YES

t-values > 1.645^* (p< 0.05); t-values > 2.33^{**} (p< 0.01)

Blindfolding

- Using PLS for prediction purposes requires a measure of predictive capability
- Suggested approach Blindfolding
- Wold (1982, p. 30), "The cross-validation test of Stone (1974) and Geisser (1975) fits soft modeling like hand in glove"

Blindfolding

- Set omission Distance D, eg: D = 3.
- Build D groups of data points that are successively deleted.

Standardized data:

MV 1	MV 2	MV 3
a	b	с
b	с	a
С	а	b
а	b	С
b	с	а
С	a	b
а	b	С

1. Round, omission of group a:

MV 1	MV 2	MV 3
	b	С
b	С	North Mark
С		b
	b	C
b	C	
С	38 J 77-	b
	b	c

2. Round, omission of group b:

MV 1	MV 2	MV 3
а		c
	c	а
C	а	
а		C
	с	а
с	а	
а		С

3. Round, omission of group c:

MV 1	MV 2	MV 3
а	b	
b		а
	а	b
а	b	
b		a
	a	b
а	b	

Blindfolding

- PLS model estimation for every block of estimated data
- Calculate block wise the sum of squared of prediction errors (e) and the sum of squares of original (omitted) values (O)
- Calculation of predictive relevance: $Q^2 = 1 \frac{\sum_{D} E_{D}}{\sum_{D} O_{D}}$
 - If Q² > 0 the model has predictive relevance
 - If Q² < 0 the model has lack of predictive relevance
Predictive Relevance Q²

- Q² is a criterion to evaluate how ell the omitted data are estimated by the model
- The omitted data can be estimated in 2 modes: Cross validated communality (H²) or Cross validated redundancy (F²)
- H² is where the missing values of the manifest data are estimated using the latent variables scores and factor loadings.

$$Pred(x_{jhi}) = \hat{\pi}_{jh}Y_{ji}$$

• *F*² is where the scores of the latent endogenous variables are estimated by the scores of latent exogenous variables and the weights in the measurement model. Then these newly estimated scores of latent exogenous variables are used to estimate the missing manifest variables scores

 $\operatorname{Pred}(x_{jhi}) = \hat{\pi}_{jh}\operatorname{Pred}(Y_{ji})$

$$\operatorname{Pred}(Y_{ji}) = \sum_{j': \xi_{i'} \text{ explaining } \xi_i} \beta_{j'} Y_{j'i}$$

Q-squares Statistics

- A The Q-squares statistics measure the predictive relevance of the model by reproducing the observed values by the model itself and its parameter estimates. A Q-square greater than 0 means that the model has predictive relevance; whereas Q-square less than 0 mean that the model lacks predictive relevance (Fornell & Cha, 1994).
- In PLS, **two kinds of Q-squares** statistics are estimated, that is, cross-validated (c-v) communality (H^2_i) and cross-validated redundancy (F^2_i) .
- Both statistics are obtained through blindfolding procedure in PLS. Blindfolding procedure (while estimating Q-squares) ignores a part of the data for a particular block during parameter estimation (a block of indicators is the set of measures for a construct). The ignored data part is than estimated using the estimated parameters, and the procedure is repeated until every data point has been ignored and estimated. Omission and estimation of data point for the blindfolded construct depend on the chosen omission distance G (Chin, 1998a).

Stone-Geisser test criterion :
$$Q_j^2 = 1 - \frac{\sum\limits_k E_{jk}}{\sum\limits_k O_{jk}}$$

Communality and Redundancy

- Note: ^a Communality _j = 1/p Σ cor² (X_{jb}, Y_j), where p = is the total number of MVs in the block; X_{jb} = hth MV in jth block; Y_j = latent variable. The communality index measures the quality of the measurement model for each block (Tenanhaus et al., 2005).
 - ${}^{b}H^{2} = CV$ -communality index

^c Redundancy $_{j}$ = communality $_{j}$ X R². The redundancy index measures the quality of the structural model for each endogenous block, taking into account the measurement model (Tenanhaus et al., 2005).

^d CV-redundancy $(F_j^2) = 1 - \Sigma_D = (\Sigma_D SSE_D) / (\Sigma_D SSO_D)$, where *D* is the omission distance, SSE is the sum of squares of prediction errors, and SSO is the sum of squares of observations (Henseler et al., 2009). It measures the capacity of the path model to predict the endogenous MVs indirectly from a prediction of their own LV using the related structural relation, by cross-validation (Tenanhaus et al., 2005).

^eGoF = *average R square X average communality* (Tenanhaus et al., 2005).

 H² and F² the values should be greater than the threshold of 0 (Fornell & Cha, 1994)

Predictive Relevance Q²

- Sum of squares of manifest variables: $SSO_{jh} = \sum (x_{jhi})^{k}$
- Sum of squares of prediction errors:

$$SSE_{jh} = \sum_{i}^{\prime} (x_{jhi} - \hat{\pi}_{jh} Y_{ji})^{2}$$
$$SSE'_{jh} = \sum_{i}^{\prime} (x_{jhi} - \hat{\pi}_{jh} \operatorname{Pred}(Y_{ji}))^{2}$$

- Sum of squares model of manifest variables (in the same measurement model j): $SSO_j = \sum SSO_{jh}$

$$SSE_j = \sum_h SSE_{jh}$$
 $SSE'_j = \sum_h SSE'_j$

Cv communality for measurement model *j*:

$$SSE'_{j} = \sum_{h} SSE'_{jh}$$

model *j*:

Cv redundancy for measurement

Q-squares Statistics

- A cross-validated communality H²_j is obtained if prediction of the omitted data points in the manifest variables block is made by underlying latent variable (Chin, 1998). In other words, the cv-communality H²_j measures the capacity of the path model to predict the manifest variables (MVs) directly from their own latent variable (LV) by cross-validation. It uses only the measurement model.
- The prediction of a MV of an endogenous block is carried out using only the MVs of this block (Tenanhaus et al., 2005). On the other hand, a cross-validated redundancy predicts the omitted data points by constructs that are predictors of the blindfolded construct in the PLS model (Chin, 1998a).
- In other words, the cv-redundancy F_j^2 measures the capacity of the path model to predict the endogenous MVs indirectly from a prediction of their own LV using the related structural relation, by crossvalidation.
- The prediction of an MV of an endogenous block j is carried out using all the MVs of the blocks j* related with the explanatory LVs of the dependent LV_j (Tenanhaus et al., 2005). This index is used for measuring the quality of the path model. In accordance to effect size (*f*²), the relative impact of the structural model on the observed measures for latent dependent variable is evaluated by means of q² (Henseler et al., 2009).
- The q² values of 0.02, 0.15, and 0.35 signify small, medium, and large predictive relevance of certain latent variable, thus explaining the endogenous latent variable under evaluation

Q-squares Statistics

- The cv-communality H²_j measures the capacity of the path model to predict the manifest variables (MVs) directly from their own latent variable (LV) by cross-validation. <u>It uses only the</u> <u>measurement model.</u>
- The cv-redundancy F²_j measures the capacity of the path model to predict the endogenous MVs indirectly from a prediction of their own LV <u>using the related structural relation</u>, by cross validation.
- In accordance to effect size (f²), the relative impact of the structural model on the observed measures for latent dependent variable is evaluated by means of q² (Henseler et al., 2009).
- The q² values of 0.02, 0.15, and 0.35 signify small, medium, and large predictive relevance of certain latent variable, thus explaining the endogenous latent variable under evaluation.

Bug in Blindfolding

Christian

Back to top	🗟 profile) 🚨 pm	
Prof. Dr. Christian M.	D Posted: Sun Jan 25, 2009 10:25 pm Post subject:	🔍 quote
Ringle TUHH - Hamburg	Hi,	
University of Technology	the redundancy and communality computations run fine in SmartPLS.	
	However, cv-redundancy and cv-communality outcomes are different things. You use the blindfolding procedure to obtain these values and use them to comp and q ² (predictive relevance, Stone-Geisser-Test).	ute Q²
SmartPLS Developer	However, as reported elsewhere in this forum, the blindfolding procedure has a bug. It does correctly compute the cv-redundancy and cv-communality outcomyou must follow specific rules:	nes but
Posts: 337	cv-redundancy: check only a single latent variable in the blindfolding routine - you are then correctly analyzing the checked one.	
	cv-communality: check all latent variables exept a single one in the blindfolding procedure - you are then correctly analyzing the unchecked one.	
	Cheers	

Reporting Q²

Figure 2: Q² in a complex model

Higher order constructs

• A number of recent papers have presented second order construct models.

• Higher level of abstraction?

Reason for 2nd order factor

 As suggested by Hair et al. (2013) one of the main reasons to include second order construct in research is to reduce the number of relationships in the structural model, making the PLS path model more parsimonious and easier to grasp.

Higher Order Constructs

- When using higher order constructs, several issues need to be considered.
- The most important is the purpose of the model:
 - Often the initial answer is that a good model demonstrates that a general, more global factor exists that explains the first order factors.

 Is this second order factor expected to mediate fully the relationship of the first order factors when applied in a theoretical model?

There are 4 possible types of second-order constructs.

Type I: Reflective-reflective

Type II: Reflective-formative

Type III: Formative-formative

Type IV: Formative-reflective

Technical Consideration

- The PLS path modeling algorithm requires that every latent variable has at least one manifest indicator
 - Phantom variables are not possible

- Solution
 - Repeated-indicator approach, (Wold, 1982; Lohmoller, 1989)

Type II

Type III

Type IV

Model of a Moderator (Condition) Independent Dependent **Moderator** Who it did it work for?

Goal Setting Theory (Locke et al., 1981)

Moderator Variable

 A moderator specifies the conditions under which a given effect occurs, as well as the conditions under which the <u>direction (nature)</u> or <u>strength</u> of an effect vary. Baron and Kenny (1986, pp. 1174, 1178) describe a moderator variable as the following:

Moderator Variable

• A qualitative (e.g., sex, race, class) or quantitative variable . . . that affects the direction and/or strength of a relation between an independent or predictor variable and a dependent or criterion variable . . . a basic moderator effect can be presented as an interaction between a focal independent variable and a factor (the moderator) that specifies the appropriate conditions for its operation . . . Moderator variables are typically introduced when there is an **unexpectedly** weak or inconsistent relation between a predictor and a criterion variable.

Moderator Variable

- A moderator variable is one that affects the relationship between two variables, so that the nature of the impact of the predictor on the criterion varies according to the level or value of the moderator (Holmbeck, 1997).
- A moderator interacts with the predictor variable in such a way as to have an impact on the level of the dependent variable.

Hypothesis

- Should I Hypothesize the form of <u>My</u>
 <u>Interactions</u> in Advance?
 - YES, not only should the existence of an interaction effect be predicted, but also its form. In particular, whether a moderator increases or decreases the association between two other variables should be specified as part of the a priori hypothesis (Dawson, 2013).

H1: The positive relationship between satisfaction and loyalty will be **stronger** for those with **high perceived image**.

Why Plot?

 However, it is not entirely clear how it differs. If the you get a positive coefficient, the positive coefficient of the interaction term suggests that it becomes more positive as **Image** increases; however, the size and precise nature of this effect is not easy to divine from examination of the coefficients alone, and becomes even more so when one or more of the coefficients are negative, or the standard deviations of X and Z are very different (Dawson, 2013).

Interaction Plot

Testing in SPSS (Block 1)

 Expectation Image Quality Satisfaction Satisfaction * Im Value Image at 	Dependent: Loyalty Block 1 of 2 Previous Independent(s): Satisfaction	Save Options Bootstrap
Satisfactioncat	Method: Enter	
ОК	Paste Reset Cancel Help	

Testing in SPSS (Block 2)

 Expectation Image Quality Satisfaction Satisfaction * Im Value Imagecat Satisfactioncat 	Dependent: Loyalty Block 2 of 2 Previous Independent(s): Independent(s): Independent(s): Independent(s): Independent(s): Independent(s): Selection Variable: Rule	Statistics Plo <u>t</u> s Save Options Bootstrap
	Case Labels:	

Testing in SPSS (Block 3)

 Expectation Image Quality Satisfaction Satisfaction * Im Value Imagecat Satisfactioncat 	Dependent: Loyalty Block 3 of 3 Previous Next Independent(s): Satisfaction * Image [Sati Method: Enter	<u>Statistics</u> Plo <u>t</u> s S <u>a</u> ve Options Bootstrap
	Selection Variable: Selection Variable: Rule Case Labels: WLS Weight:	

Testing in AMOS (Unconstrained)

Testing in AMOS (Constrained)

Beta (Low Image = High Image)

Look at the Chi Squared difference Test

Caveat

 An important consideration about categorical moderators is that they should only be used when the variable was originally measured as categories. Continuous variables should never be converted to categorical variables for the purpose of testing interactions. Doing so reduces the statistical power of the test, making it more difficult to detect significant effects (Stone-Romero and Anderson 1994; Cohen et al. 2003), as well as throwing up theoretical questions about why particular dividing points should be used (Dawson, 2013).

Procedure

- Ideally, the regression should include all independent variables, the moderator, and interactions between the moderator and each independent variable.
- It is important in this situation that all predictors are mean-centered or zstandardized before the calculation of interaction terms and the regression analysis.

Testing in PLS

Moderator Effect Assessment

$$f^{2} = \frac{R_{i}^{2} - R_{m}^{2}}{1 - R_{i}^{2}} = \frac{0.664 - 0.659}{1 - 0.664} = 0.015$$
(Here, *i* = interaction model, *m* = main effect model)
According to **Cohen (1988)**, *f*² is assessed as:

0.02 small
0.15 medium
0.35 large

Suggested Reading

- Sharma, S., Durand, R. M., & Gur-Arie, O. (1981).
 "Identification and analysis of moderator variables". Journal of Marketing Research, 18(3), 291-300.
- Dawson, J. F. (2013). Moderation in Management Research: What, Why, When, and How. *Journal of Business and Psychology*, DOI 10.1007/s10869-013-9308-7

Mediation

Research Model

Basic Requirement

- Despite the extensive use of complex statistical modeling in the behavioral sciences, the quality of a research project is largely determined by the design decisions that are made before any analysis is done and even before the study is conducted.
- The conceptualization of a mediation analysis requires forethought about the relationships between the variables of interest and the theoretical meaning behind those relationships. (McKinnon et al., 2012)

Mediator Variable (Mechanism)

- A mediator specifies how (or the mechanism by which) a given effect occurs (Baron & Kenny, 1986; James & Brett, 1984). Baron and Kenny (1986, pp. 1173, 1178) describe a mediator variable as the following:
- How did it work?

Mediator Variable

 The generative mechanism through which the focal independent variable is able to influence the dependent variable of interest . . . (and) Mediation . . . is best done in the case of a strong relation between the predictor and criterion variable.

Mediator Variable

 Shadish and Sweeney (1991) stated that "the independent variable causes the mediator which then causes the outcome". Also critical is the prerequisite that there be a significant association between the independent variable and the dependent variable before testing for a mediated effect.

Mediator Effect

- According to McKinnon et al, (1995), mediation is generally present when:
 - 1. the IV significantly affects the mediator,
 - 2. the IV significantly affects the DV in the absence of the mediator,
 - 3. the mediator has a significant unique effect on the DV, and
 - 4. the effect of the IV on the DV shrinks upon the addition of the mediator to the model.

Mediator Variable

 Baron & Kenny (1986) has formulated the steps and conditions to ascertain whether full or partial mediating effects are present in a model.

Mediation

Mediator Analysis

- Judd and Kenny (1981), a series of regression models should be estimated. To test for mediation, one should estimate the three following regression equations:
 - 1. regressing the mediator on the independent variable;
 - 2. regressing the dependent variable on the independent variable;
 - 3. regressing the dependent variable on both the independent variable and on the mediator.

Mediator Analysis

- variations in levels of the independent variable significantly account for variations in the presumed mediator (i.e., Path c),
- 2) variations in the mediator significantly account for variations in the dependent variable (i.e., Path *b*), and
- 3) when Paths *a* and *b* are controlled, a previously significant relation between the independent and dependent variables is no longer significant, with the strongest demonstration of mediation occurring when Path *c* is zero.

Mediator Analysis

 Separate coefficients for each equation should be estimated and tested.

 There is no need for hierarchical or stepwise regression or the computation of any partial or semipartial correlations.

Mediator Effect Assessment – Testing Significance

Can Use the Sobel (1982) test

Online: <u>http://www.quantpsy.org/sobel/sobel.htm</u>

- The indirect effect is significant at:
 - 0.05 if z > 1.96
 - 0.01 f z > 2.58

http://quantpsy.org/sobel/sobel.htm

a and *b* = **path coefficient**

 s_a and s_b = standard errors

 t_a and t_b = t-values for *a* and *b* path coefficients generated from bootstrapping

Testing in SPSS

Data.sa	v [DataSet1] - IBM SPSS Sta	nistics Data Editor	1	1		and the second		10 C			_	1		-	-	Î X
File Edit	View Data Transform	Analyze Direct Marketing	Graphs	Ublities Add-ons W	(indow Help											
3	1 🖨 🛄 🐑 🔿	Reports Descriptive Statistics	:	📓 📰 🕾 🖩		6 46										
		Tables													Visible: 9 of 1	9 Variable
1	Expectation	Compare Means +		Quality	Satisfaction	SatisfactionImage	Value	Imagecat	Satisfactioncat	VER	Var	Var	Var	Var	Vite	Wat
1	7.000	General Linear Model	, 00	5.773	5.70	6 4.361	2 552	Low	Low							1
2	10.000	Generalized Linear Models L		9.733	9.39	8 3.865	10.000	High	High							
3	7.000	March Markalo	58	6.999	7.40	1 .151	7.000	Low	Low							
4	8.354	Correlate	00	7.388	10.00	0 1.052	5.000	High	High							1
5	7.549		RA	9.054	.R.R.	1 009	6.000	High	High							
6	9.549	regression		Automatic Linear Modeling Linear Linear Linear Linear			10.000	High	Low							
7	7.646	Loginear					6.105	Low	High							
8	5.451	Neural Networks					6.105	High	Low							
9	7.000	Classify	1	Partial Least Squares		6.105	Low	Low							_	
10	7.549	Dimension Reduction	1	Preacher and Hayes (2008) Multiple Med	sation (INDIRECT)	5,105	Low	Low							
11	6.549	Scale +		Preacher and Hayes (2004) Simple Mediation Procedure (SOBEL)				Low	High							
12	10.000	Monparametric Tests	1	Binary Logistic				High	High							
13	7.097	Forecasting						High	High							
14	10.000	Survival	1	Mutinomial Logistic	ATTAINE STATEMENT	7.552	High	High								
15	5.000	Multiple Response	2	PROCESS, by Andrew	www.afhayes.com)	3.657	High	Low								
16	5.903	Missing Value Analysis.		Ordinal.		4.762	High	Low								
17	8.000	Multiple Imputation	• 1	Probit		7.762	High	High								
18	5.903	Complex Samples	3 1	Montinear			7.000	Low	Low							
19	8.000	Quality Control	0.1				7.448	High	High							
20	5.903	ROC Curve	1				7.000	Low	Low							
21	5.354	IBM SPSS Amore	-				7.000	High	High							
22	7.354	1.140	4.610	Opernal Scaling (GAT	REG)		5.000	High	Low							
23	6.097	7.000	7.000	6.882	6.39	6 .671	6,105	Low	Low							
24	7.000	7.486	8,568	7.721	8.00	0 - 073	9.000	Low	High							
25	7.549	6.611	1.864	5.991	4.90	0 2.690	4.105	Low	Low							
26	8.903	10.000	10.000	10,000	9.40	5 4.526	8.000	High	High							
27	8.000	8.329	7.000	7,868	6 80	6 . 583	7.000	High	Low							
28	8.000	3.791	8.864	5.000	6.80	6 2.810	10.000	Low	Low							
29	6.451	7.179	8.432	7.441	7.40	1 .059	7.552	Low	Low							
30	8.354	9.643	10.000	9.573	9.69	9 4,601	9.105	High	High							
-	DATE:	2.22		1												10.1

Data View Vanable View

Preacher and Hayes (2004) Simple Mediation Procedure (SOBEL)

n

Testing in SPSS

 Image Satisfaction * Image [Satisfactio Value Imagecat Satisfactioncat 	 Proposed Mediator (M) ✓ Satisfaction Independent Variable (X) ✓ Quality Sobel test standard error Second order Bootstrap samples 5000 0 1000 2000 5000 1000 2000 5000
--	---

Testing in SPSS

 Expectation Satisfaction * Image [Satisfacti Imagecat Satisfactioncat 	*	Dependent Variable (Y)	About It
Contrast Indirect Effects Bootstrapping Number of samples 5000 Percentile	*	Independent Variable (X)	
Bias Corrected (BC)		Confidence Intervals	

Testing in AMOS

The : Group number 1 : Input									
File	Edit \	View D	Diagram Analy	ze Tools Plugins Help					
□ ←	○ ↔	방 임	Group number 1			\frown			
Title				Analysis Properties		e1			
H	遭	1		Estimation Numerical Bias Output	Bootstrap Permutations Random # Title	1			
6		X		Perform bootstrap	5000 Number of bootstrap				
*	0	***	OK: Default mode	Percentile confidence intervals	95 PC confidence level	Satisfaction			
\sim		Ø			95 BC confidence level	(e2)			
	P888		Unstandardized e	☐ Bootstrap ADF	Monte Carlo (parametric bootstrap)				
•	Ð	Q		T Bootstrap ML	☐ Report details of each bootstrap sample	Quality			
Q	•	-		GLS Bootstrap GLS	☑ Bollen-Stine bootstrap				
	Q=Q Q=Q	٩		Bootstrap SLS	1 Bootfactor				
5	CM	#	Scanning Data	Bootstrap ULS					
		() ()	Default model						
			Iteration 5						
			Minimum was						
			Writing output			-			

Suggested Test for Mediator

Based on Preacher and Hayes (2008)

Bootstrap the indirect effect

Bootstrapping

- Bootstrapping, a nonparametric resampling procedure, has been recognized as one of the more rigorous and powerful methods for testing the mediating effect (Hayes, 2009; Shroud & Bolger, 2002; Zhao et al., 2010).
- The application of bootstrapping for mediation analysis has recently been advocated by Hair et al. (2013) whom noted that "when testing mediating effects, researchers should rather follow Preacher and Hayes (2004, 2008) and bootstrap the sampling distribution of the indirect effect, which works for simple and multiple mediator models" (p. 223).
- Furthermore, this method is said to be perfectly suited for PLS-SEM because it makes no assumption about the shape of the variables' distribution or the sampling distribution of the statistic and therefore can be applied to small sample sizes (Hair et al., 2013; Preacher & Hayes, 2008).

Bootstrapping Indirect Effect

H₀: *a*b*=0 H₁: *a*b*≠0

• For each bootstrap sample, calculate $a_i * b_i$

• Create the bootstrap t-statistic

$$t = \frac{a^*b}{sd(a_i^*b_i)}$$

Testing Mediation in PLS

Testing Mediation in PLS												
9	Book112 - Microsoft Excel Home Insert Page Layout Formulas Data Review View Acrobat											
Paste	X Cut Là Copy ✓ Format Robustor		🐨 Wrap Text General	• Conditional Format Che	mal Bad Garatory	Good Neutral	Calculat					
	Clipboard + Font / Alignment / Number / Styles											
	A	B	C	D	E	F						
1		ATTITUDE -> INTENTION	SN -> ATTITUDE	a*b	Std Error							
2	Sample 0	0.837223	0.721428	0.603996114	0.040246283	6						
з	Sample 1	0.822793	0.682056	0.561190902	1							
4	Sample 2	0.793366	0.660204	0.523783407								
5	Sample 3	0.793476	0.698009	0.553853389								
6	Sample 4	0.822039	0.688098	0.565643392	t	a*b						
7	Sample 5 0.796256		0.669747	0.533290067	· -	sd ($a_i^*b_i$)						
8	Sample 6	0.839571	0.70682	0.593425574								
9	Sample 7	0.83994	0.747936	0.628221364								
10	Sample 8	0.822785	0.67188	0.552812786								
	-											

Reporting

 The bootstrapping analysis showed that the indirect effect β = 0.159 (0.546*0.291) was significant with a t-value of 3.682. Also as indicated by Preacher and Hayes (2008) the indirect effect 0.159, 95% Boot CI: [LL = 0.074, UL = 0.243 does not straddle a 0 in between indicating there is mediation. Thus we can conclude that the mediation effect is statistically significant.

Suggested Reading

- Baron, R. M., & Kenny, D. A. (1986). The moderatormediator variable distinction in social psychological research: Conceptual, strategic and statistical considerations. *Journal of Personality and Social Psychology, 51*, 1173-1182.
- Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical Mediation Analysis in the New Millennium. *Communication Monographs*, 76(4), 408-420.

Suggested Readings

 Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. *Behavior Research Methods*, 40(3), 879-891.

Preacher, K. J., & Hayes, A. F. (2004). SPSS and SAS procedures for estimating indirect effects in simple mediation models. *Behavior Research Methods, Instruments, & Computers*, 36(4), 717-731.

Suggested Readings

 Hayes, A. F. (2013). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York: Guilford Press.

 MacKinnon, D. P., Coxe, S., & Baraldi, A. N. (2012). Guidelines for the Investigation of Mediating Variables in Business Research. *Journal of Business and Psychology*, 27(1), 1-14.
Mediator Analysis

Mediator Analysis

Mediator Effect Assessment – Variance Accounted For (VAF)

Mediator Effect Assessment – Variance Accounted For (VAF)

$$VAF = \frac{a \times b}{a \times b + c} = \frac{0.840 \times 0.328}{0.840 \times 0.328 + 0.517} = 0.348$$

- VAF = Variance accounted for
- Indirect effect / Total Effect
- Shrout & Bolger (2002)
- VAF is converted into %

- Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: A review of four recent studies. Strategic Management Journal, 20, 195–204.
- Bagozzi, R. P., Yi, Y., & Philipps, L. W. (1991). Assessing construct validity in organizational research. *Administrative Science Quarterly*, 36, 421–458.
- Heeler, R. M., & Ray, M. L. (1972). Measure validation in marketing. Journal of Marketing Research, 9, 361–370.
- Churchill, G. A. J. (1979). A paradigm for developing better measures of marketing constructs. *Journal of Marketing Research*, 16, 64–73.
- Diamantopoulos, A. (1994). Modelling with LISREL: A guide for the uninitiated. *Journal of Marketing Management*, 10, 105–136.
- Gefen, D., Straub, D. W., & Boudreau, M.-C. (2000). Structural equation modeling and regression: Guidelines for research practice. *Communications of the Association for Information Systems*, 4, 1–79.
- Chin, W.W. (2000). Partial least squares for researchers: an overview and presentation of recent advances using the PLS approach. available at: <u>http://disc-nt.cba.uh.edu/chin/icis2000plstalk.pdf</u>

- Chin, W. W. (2010). How to write up and report PLS analyses. In V. Esposito Vinzi, W. W. Chin, J. Henseler, & H. Wang (Eds.), *Handbook of partial least squares: Concepts, methods and application* (pp. 645–689). New York: Springer.
- Chin, W.W. (1998a). The partial least squares approach to structural equation modeling." In G.A. Marcoulides (Ed.), *Modern business* research methods. Mahwah, NJ: Lawrence Erlbaum Associates.
- Chin, W.W. (1998b). Issues and opinion on structural equation modeling. *MIS Quarterly*, 22(1), 7-16.
- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research*, 18(1), 39-50.
- Tenenhaus, M., Esposito Vinzi, V., Chatelin, Y.-M., & Lauro, C. (2005).
 PLS path modeling. *Computational Statistics & Data Analysis*, 48(1), 159–205.
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.), Hillsdale, Lawrence Erlbaum Associates, NJ.
- Nunnally, J. C. (1978). *Psychometric theory*. NewYork: McGraw-Hill.

- Cohen, J. (1988). Statistical Power Analysis for the Behavioural Sciences (2nd ed.). Hillsdale, New Jersey: Lawrence Erlbaum Associates.
- Falk, R Frank, & Miller, Nancy B. (1992). A primer for soft modeling. Akron, Ohio: University of Akron Press.
- Chin, W. W. (1998). The partial least squares approach for structural equation modeling. In G. A. Marcoulides (Ed.), *Modern methods for business research* (pp. 295-358). Mahwah, NJ Lawrence Erlbaum Associates.
- Chin, W. W. (2010). How to write up and report PLS analyses Handbook of partial least squares (pp. 655-690): Springer.
- Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. *Information Systems Research*, 14(2), 189-217.

- Podsakoff, P. M., MacKenzie, S. B., Lee, Jeong-Yeon, & Podsakoff, N. P. (2003). Common method biases in behavioral research: a critical review of the literature and recommended remedies. *Journal of applied psychology*, 88(5), 879.
- Podsakoff, P. M, & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. *Journal of management*, 12(4), 531-544.
- Podsakoff, P. M, & Todor, W. D. (1985). Relationships between leader reward and punishment behavior and group processes and productivity. *Journal of Management*, 11(1), 55-73.
- Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. *Behavior Research Methods*, 40(3), 879-891.
- Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: new procedures and recommendations. *Psychological methods*, 7(4), 422.

- Samat, N., Ramayah, T, & Yusoff, Y. M. (2008). Do ISO certified SME's have higher quality practices? Empirical insights from the Northern region of Malaysia. *International Journal of Business* and Management, 3(3), 66-75.
- Urbach, N., & Ahlemann, F. (2010). Structural Equation Modelling in Information Systems Research Using Partial Least Squares. *Journal of Information Technology Theory and Application*, 11(2), 5-40.
- Zhao, X., Lynch, J. G., & Chen, Q. (2010). Reconsidering Baron and Kenny: Myths and truths about mediation analysis. *Journal of Consumer Research*, 37(2), 197-206.
- Fornell, C., & Cha, J. (1994). Partial least squares. In R. P. Bagozzi (Ed.), Advanced Methods of Marketing Research (pp. 52-78). Cambridge, MA: Blackwell Business.

- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research, 18*(1), 39-50.
- Hair, J. F., Black, William C., Babin, B. J., & Anderson, R. E. (2010). *Multivariate Data Analysis* (7th ed.): Prentice Hall.
- Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed A Silver Bullet. *Journal of Marketing Theory and Practice*, 19(2), 139-151.
- Hair, J. F., Hult, G., Tomas, M., Ringle, C. M., & Sarstedt, M. (2013). A primer on partial least squares structural equation modeling (PLS-SEM): SAGE Publications, Incorporated.
- Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication Monographs, 76(4), 408-420.

- Pace, C. R. (1939). Factors Influencing questionnaire returns from former university students. *Journal of Applied Psychology*, 23(2), 388-397.
- Linsky, A. S. (1975). Stimulating responses to mailed questionnaires: A review. *Public Opinion Quarterly*, 39(1), 82-101.
- Reid, S. (1942). Respondents and non-respondents to mail questionnaires. *Educational Research Bulletin*, 21(4), 87-96.
- Hansen, M. H., & Hurwitz, W. N. (1946). The problem of non-response in sample surveys. *Journal of the American Statistical Association*, 41(236), 517-529.
- Armstrong, J. S., & Overton, T. S. (1977). Estimating Nonresponse Bias in Mail Surveys, *Journal of Marketing Research*, 14(3), 396-402.
- Anderson, J. C. & Gerbing, D. W. (1991). Predicting the Performance of Measures in a Confirmatory Factor Analysis With a Pretest Assessment of Their Substantive Validities. Journal of Applied Psychology, 76(5), 732-740.

Resources:

http://www2.gsu.edu/~mkteer/

http://www.smallwaters.com/weblinks/

Thank you for listening

If you can't explain it **simply**, you don't understand it well enough.

- Albert Einstein

Persevere 1 Success 2

dreaminime