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Foreword

This book contains write-ups of presentations at PLS 2012 which was the 7th meet-
ing in the series of PLS conferences and chaired by Professors Wynne Chin and
David Francis at the University of Texas at Houston. Here PLS stands for partial
least squares projection to latent structures. It is an approach for modeling relations
between data matrices of different types of variables measured on the same set of
objects (cases, individuals, chemical or biological samples, businesses, etc.).

The series was started in Paris in 1999 by Michel Tenenhaus, Vincenzo Vinci,
et al., with two objectives: (a) to present interesting developments and applications
of the PLS approach and (b) bring together PLS users from a wide range of fields in
social, economic, natural sciences, and engineering.

It was a privilege and a joy to attend this 7th conference, listening to interesting
talks, experiencing Houston and the hospitality of Wynne Chin and his team, includ-
ing a fascinating visit to NASA to hear the story of the American space program.

In the tradition of the PLS-nn meetings, we were entertained by a great vari-
ety of PLS developments (e.g., PLS metamodels, variable selection, sparse PLS re-
gression, distance-based PLS, significance vs. reliability, nonlinear PLS, and much
more) and applications on a wide range of data, from the traditional economet-
ric/economic data to data from genomics, brain images, epidemiology, and chem-
ical spectroscopy. All this gave rise to numerous interesting discussions and new
scientific contacts spanning the world.

It is now about 50 years since Herman Wold, my dear late father, started to look
into multivariate analysis and its potential for analyzing and interpreting multidi-
mensional econometric data. He started with principal component analysis (PCA),
in computer science often called singular value decomposition (SVD). PCA can be
seen as the simplest PLS model with a single block X. One of Herman’s first accom-
plishments in this field was to make PCA handle missing data, and he soon realized
that PCA was a wonderful tool to reduce a block of data (a matrix) to something
much smaller. This could then, with some modifications, be used as building blocks
in complex schemes of information flow, so-called PLS path models. The PLS path
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vi Foreword

models grew in different directions as summarized in the second volume of the book
Systems under Indirect Observation (edited by KG Jöreskog and H Wold, Amster-
dam, North Holland 1982).

Around 1975 some chemists–Bruce Kowalski in Seattle, and myself in Umeå,
Sweden—started to be interested in PLS-modeling. Bruce successfully tried PLS

path modeling on water samples from the “Trout Creek” area in Colorado, with the
same 11 ions measured at 5 sites along the creek. Myself (Svante), I investigated the
simplest two-block PLS model and its use for multiple regression problems with one
or several responses (y or Y). This turned out to be a powerful approach. Suddenly
we could do regression-like modeling with arbitrary many X-variables even for data
sets with a small number of observations. And PLS provided a model also of the
X-space, greatly facilitating the chemical (or biological, or, etc.) interpretation of
the results and prediction of new events. In collaboration with Harald Martens in
Oslo, this was further developed to an approach of multivariate calibration where
the whole spectra of samples were related to concentrations of interest, instead of
the traditional calibration using data at a single wavelength.

The two-block PLS, or PLS regression, became the core of a toolbox of data
mining, long before the latter term was coined, and today this has expanded to PLS-
discriminant analysis, time-series PLS, hierarchical PLS, PLS-trees, three-way PLS,
batch-PLS, nonlinear PLS, and more.

So, before 1999, we had two apparently dissimilar PLS camps, one in social-
economic science with complex multiblock PLS path models and one in chemistry-
biology and engineering limiting themselves to the simplest two-block PLS model
(PLS regression). Then, at the first PLS-nn conference in Paris in 1999, these two
camps were brought together, discussed the PLS approach in its different flavors,
and considered interesting applications in various fields. The present PLS 12 confer-
ence had the same format and scope. The expansion on the natural science side is
noticeable, especially what concerns biological applications, but the integration of
the two approaches is still limited (see, however, the article by Löfstedt, Hanafi, and
Trygg). Given the close connection between the two PLS approaches, this is some-
what strange, and with time we can hope that this division will disappear, much
helped by this series of PLS-nn conferences.

Some interesting connections between the two approaches are seen by consider-
ing the relations between:

(a) The simplest two-block PLS model
(b) A hierarchical PLS model where matrix X is split into blocks—a “star-formed”

path model where each X-block is connected to Y and only to Y
(c) A PLS path model, where the blocks in (b) are arranged in a path structure, all

applied to the same data, (X, Y), and using the same Mode A for the estimation
of all score vectors (LVs)

Going from (a) to (b) corresponds to installing restrictions on the model since
implicit interactions between variables in different blocks are forced to be zero.
Similarly, going from (b) to (c) installs further restrictions since only a few of the
inner relations between the score vectors have coefficients different from zero.
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Hence, by comparing the amount of explained and cross-validated variances for
the Y-block (R2 and Q2, respectively) for the three models, one will have Model
(a) be “better” than Model (b), which in turn will be “better” than Model (c). This
occurs because a nonrestricted model always fits data better than a restricted one,
but not necessarily predicts better. If the differences in fit or predictivity are large,
this indicates a misspecification of Model (c) and/or of Model (b), which can then
be diagnosed further by means of the residual variances of blocks and individual
variables, for both fitted and cross-validated and other residuals.

So, to conclude this brief foreword, I wish once more to thank and congratu-
late the organizers to an excellent and most interesting conference. And second, I
would like to see—hopefully already at the next PLS-nn conference (i.e., PLS 2014
in Paris)—more cases where different types of PLS models (e.g., path models, hi-
erarchical PLS regression, and ordinary PLS regression) are run on the same data,
including discussions of similarities and differences.

Thanks a million.

Umeå, Sweden Svante Wold





Preface

In 1999 the first meeting dedicated to partial least squares methods (abbreviated as
PLS and also, sometimes, expanded as projection to latent structures) took place in
Paris. Other meetings in this series took place in various cities, and in 2012, from the
19th to the 22nd of May, the seventh meeting of the partial least squares (PLS) series
took place for the first time in the United States (in Houston, Texas). This première
was a superb success with roughly 120 authors presenting 44 papers during these
4 days. These contributions were all very impressive by their quality and by their
breadth. They covered the multiple dimensions of partial least squares-based meth-
ods, ranging from partial least squares regression and correlation to component-
based path modeling, regularized regression, and subspace visualization. In addition
several of these papers presented exciting new theoretical developments. This diver-
sity was also expressed in the large number of domains of application presented in
these papers: brain imaging, genomics, chemometrics, marketing, management, and
information systems to name only but a few.

After the conference, we decided that a large number of the papers presented
in the meeting were of such an impressive high quality and originality that they
deserved to be made available to a wider audience and we asked the authors of the
best papers if they would like to prepare a revised version of their paper. Most of
the authors contacted shared our enthusiasm, and the papers that they submitted
were then read and commented by anonymous reviewers, revised, and finally edited
for inclusion in this volume. These 22 papers (including three invited contributions
from our keynote speakers), included in New perspectives in Partial Least Squares
and Related Methods, provide a comprehensive overview of the current state of the
most advanced research related to PLS and cover all domains of PLS and related
domains.

Each paper was overviewed by one editor who took charge of having the paper
reviewed and edited (Hervé was in charge of the papers of Martens et al., Mar-
coulides and Chin, Beaton et al., Ciampi et al., Krishnan et al., Le Floch et al.,
Kovacecic et al., and Churchill et al.; Wynne was in charge of the papers of Chin
et al., Cepeda et al., Murray et al., and Newman et al.; Vincenzo was in charge of
the papers of Magidson and Aluja-Banet et al.; Giorgio was in charge of the papers
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of Sharma and Kim, Liu et al., Löfstedt et al., and Eslami et al.; Laura was in charge
of the papers of Mehmood and Snipen, Farooq et al., and Martinez-Ruiz and Aluja-
Banet). The final production of the LATEXversion of the book was mostly the work
of Laura, Giorgio, and Hervé.

We are particularly grateful to Professor Svante Wold—one of the creators of
PLS—who opened the seventh PLS meeting with an outstanding opening keynote
that presented an overview of the field from its creation to its most recent develop-
ments and wrote the foreword presenting this book. We are also particularly grateful
to our (anonymous) reviewers for their help and dedication.

Finally, this meeting would not have been possible without the generosity, help,
and dedication of several persons, and we would like to specifically thank John
Antel, Thierry Fahmy, David Francis, Michele Hoffman, Jennifer James, Yong Jin
Kim, Ken Nieser, Blair Stauffer, Doug Steel Sarah J. Sweaney, Reza Vaezi, and Sean
Woodward.

Richardson, TX, USA Hervé Abdi
Houston, TX, USA Wynne W. Chin
Cergy-Pontoise, France Vincenzo Esposito Vinzi
Paris, France Giorgio Russolillo
Rouen, France Laura Trinchera



Contents

Part I Keynotes

PLS-Based Multivariate Metamodeling of Dynamic Systems . . . . . . . . . . . 3
Harald Martens, Kristin Tøndel, Valeriya Tafintseva, Achim Kohler,
Erik Plahte, Jon Olav Vik, Arne B. Gjuvsland, Stig W. Omholt

1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1 Modeling in Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 PLS Regression Metamodels of Nonlinear Dynamic

Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 PCA and PLSR Similar to Taylor Expansions of Model

M ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 PCA Modeling of a Multivariate Dynamic System . . . . . . 10
1.5 PLSR as a Predictive Approximation Method . . . . . . . . . . 12

2 Dynamic Multivariate Metamodeling . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Metamodeling of Dynamic Processes . . . . . . . . . . . . . . . . . 13
2.2 PLS-Based Analysis of a Near-Chaotic Recursive System 14
2.3 Data-Driven Development of the Essential Dynamical

Model Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Dynamic Metamodeling of 3-Way Output Structures . . . . 20

3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Cognitive Aspects of Temporal Modeling . . . . . . . . . . . . . 23
3.2 Metaphors for Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

You Write, but Others Read: Common Methodological
Misunderstandings in PLS and Related Methods . . . . . . . . . . . . . . . . . . . . . 31
George A. Marcoulides and Wynne W. Chin

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2 Overview of Modeling Perspectives for Conducting Analyses . . . . 34
3 Equivalent Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xi



xii Contents

4 Sample Size Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5 Model Identification Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6 Myths About the Coefficient α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7 The Use of Correlation and Covariance Matrices . . . . . . . . . . . . . . . 55
8 Comparisons Among Modeling Methods . . . . . . . . . . . . . . . . . . . . . 56
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Correlated Component Regression: Re-thinking Regression
in the Presence of Near Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Jay Magidson

1 Background and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2 Correlated Component Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3 A Simple Example with Six Correlated Predictors . . . . . . . . . . . . . . 68
4 An Example with Near Infrared (NIR) Data . . . . . . . . . . . . . . . . . . . . 70
5 Extension of CCR to Logistic Regression, Linear

Discriminant Analysis and Survival Analysis . . . . . . . . . . . . . . . . . . 73
6 Extension to Latent Class Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Part II Large Datasets and Genomics

Integrating Partial Least Squares Correlation and Correspondence
Analysis for Nominal Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Derek Beaton, Francesca Filbey, and Hervé Abdi
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Anthony R. McIntosh, and Stephen Strother

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
2 Methods and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

2.1 Functional Magnetic Resonance Imaging (fMRI)
Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

2.2 Split-Half Behavioral PLS . . . . . . . . . . . . . . . . . . . . . . . . . . 174
2.3 Behavioral PLS on a Principal Component Subspace . . . . 175



Contents xv

2.4 Behavioral PLS and Optimized Preprocessing . . . . . . . . . . 179
3 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Part IV Multiblock Data Modeling

Two-Step PLS Path Modeling Mode B: Nonlinear and Interaction
Effects Between Formative Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Alba Martı́nez-Ruiz and Tomas Aluja-Banet

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
2 Two-Step PLS Path Modeling Mode B (TsPLS) Procedure . . . . . . . 189
3 Monte Carlo Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A Comparison of PLS and ML Bootstrapping Techniques in SEM:
A Monte Carlo Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Pratyush N. Sharma and Kevin H. Kim

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Multiblock and Path Modeling with OnPLS . . . . . . . . . . . . . . . . . . . . . . . . . 209
Tommy Löfstedt, Mohamed Hanafi, and Johan Trygg

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
2 Method and Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

2.1 Joint Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
2.2 Locally Joint Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
2.3 Unique Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

Testing the Differential Impact of Structural Paths in PLS Analysis:
A Bootstrapping Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Wynne W. Chin, Yong Jin Kim, and Gunhee Lee

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
2 MIS Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
3 Approach 1: Parametric Based t-Test . . . . . . . . . . . . . . . . . . . . . . . . . 222
4 Approach 2: Nonparametric Bootstrapping of Path Differences . . . 224
5 MIS Example: Nonparametric Bootstrapping of Path Differences

Versus Parametric t-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
6 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228



xvi Contents

Controlling for Common Method Variance in PLS Analysis:
The Measured Latent Marker Variable Approach . . . . . . . . . . . . . . . . . . . . 231
Wynne W. Chin, Jason B. Thatcher, Ryan T. Wright, and Doug Steel

1 MLMV Approach to the Common Method . . . . . . . . . . . . . . . . . . . . 232
2 Guidelines to MLMV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
3 Two Approaches for Applying the MLMV Items . . . . . . . . . . . . . . . 233
4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Part V Comparing Groups and Uncovering Segments

Multi-group PLS Regression: Application to Epidemiology . . . . . . . . . . . . 243
Aida Eslami, El Mostafa Qannari, Achim Kohler, and Stéphanie Bougeard
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Hervé Abdi
School of Behavioral and Brain Sciences, The University of Texas at Dallas,
Richardson, TX, USA

Tomas Aluja-Banet
Universitat Politecnica de Catalunya, Barcelona, Spain

Elizabeth Anderson-Fletcher
University of Houston, Houston, TX, USA

Carmen Barroso
University of Seville, Seville, Spain

Derek Beaton
School of Behavioral and Brain Sciences, The University of Texas at Dallas,
Richardson, TX, USA
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Pierre Valette-Florence
IAE, Grenoble, France

Jon Olav Vik
IMT (CIGENE), Norwegian University of Life Sciences, Ås, Norway
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PLS-Based Multivariate Metamodeling
of Dynamic Systems
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Abstract In this paper, we discuss the use of bi-linear methods for assessing
temporal dynamics, in particular with regard to the understanding of complex
biological processes. We show how the dynamics in multivariate time series mea-
surements can be summarized efficiently by principal component analysis. Then we
demonstrate how the development and use of complex, high-dimensional nonlinear
differential equation models can be facilitated by multivariate metamodeling using
nonlinear PLS-based subspace data modeling. Different types of metamodels are
outlined and illustrated. Finally, we discuss some cognitive topics characterizing
different modeling cultures. In particular, we tabulate various metaphors deemed
relevant for how the time domain is envisioned.
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1 Background

1.1 Modeling in Biology

Herman Wold, the inventor of the partial least squares (PLS) framework of prag-
matic, robust data-modeling, probably could not have fully envisioned the cur-
rent enormous increase in available data and systems knowledge. But his visionary
overview from 1983 (see Fig. 1) concerning quantitative systems analysis and the
broad scope of PLS soft modeling is still applicable [11]. It indicates that low-rank
PLS modeling may be used for linking the life sciences to many other relevant fields
of science, ranging from natural sciences like physics and chemistry to medicine,
cognitive science and psychology. We here show that it can also be linked to nonlin-
ear applied mathematics, and therefore can be used for example in detailed modeling
of nonlinear spatiotemporal dynamics. Advances in instrumentation and computers
have allowed scientific knowledge to be collected in previously unknown quantities.
For instance, quantitative information in Biology is now being collected in large data
bases or repositories, in three more or less disjoint domains:

• Actual measurements from lots of biological samples in various multichannel
instruments, including “omics” data such as mRNA, proteins and metabolites;

• Databases summarizing biological knowledge such as gene ontology (http://
www.geneontology.org) and metabolic networks (e.g., http://www.genome.jp/
kegg/pathway.html).

• Various repositories of physiological and regulatory models from Biology, (see,
e.g., http://www.cellml.org, http://sbml.org http://www.physiome.org.nz/xml
languages/fieldml)

The question is how to combine and utilize all this knowledge efficiently. For
instance, mathematical modeling is expected [8] to play an increasing role in Bi-
ology and Medicine. Explicit modeling of biological mechanisms offers the most
compact, quantitative representation of complex biological knowledge. However, to
bring “hard” modeling concepts from physics and physical chemistry into “soft”
fields of bio-science represents a clash of science cultures: On one hand, explicit
mathematical modeling was traditionally used for describing relatively simple, low-
dimensional, homogeneous, isolated physical systems: how can they be extended to
describe the far more complex, high-dimensional, heterogeneous systems of Biol-
ogy? On the other hand, while the bio-sciences today make extensive use of com-
putational statistics, mathematics was never the favorite subject for main-stream bi-
ologists. So how can Biology and medicine best benefit from applied mathematics?
And how can the development and use of mathematical models benefit from—and
provide benefit to—the use of information from massive databases of biological
measurements and networks derived from “-omic” data? This is a question of math-
ematical methodology, but also about scientific culture.

Multivariate top-down data modeling has the potential to provide bio-scientists
with tools to overview each of these domains and to bridge between data from differ-
ent sources and of different nature, be it from actual measurements, postulated net-

http://www.geneontology.org
http://www.geneontology.org
http://www.genome.jp/kegg/pathway.html
http://www.genome.jp/kegg/pathway.html
http://www.cellml.org
http://sbml.org
http://www.physiome.org.nz/xml_languages/fieldml
http://www.physiome.org.nz/xml_languages/fieldml
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Fig. 1: The pedigree and broad scope of PLS soft modeling. The “father” of PLS,
Herman Wold’s overview of the range of applications of PLS-based multivariate
data modeling (From [38])

works or mathematical model simulations. In this paper we suggest ways in which
multivariate data modeling based on the principle of partial least squares (PLS) can
facilitate the use of mathematical modeling in Biology. In particular, based on our
current experience with PLS-based metamodeling, we claim that the relevant sub-
space approximation of PLS regression can improve the understanding of the time
domain, in the sense of enhancing the quantification and interpretation of complex
temporal dynamics in living systems.

Clearly, three complex systems must be addressed simultaneously: (a) the bio-
logical system under scrutiny, (b) the perceptual and cognitive capacity of the sci-
entist and (c) the computational capacity of the modeling hardware and software.
The mathematical model must be complex enough to describe the biological system
adequately for the given purpose. But the model development and its computational
use should be under scientist’s cognitive control, without being limited to the scien-
tist’s prior understanding. The numerical routines used for implementing the model
in a computer must be robust and sufficiently accurate, and the computer implemen-
tation must offer solutions without unacceptable delays.

Predicting the behavior of a complex mathematical model just by looking at its
set of equations is usually impossible. The number of chunks of information (vari-
ables, parameters, etc.) to monitor and combine is often beyond the capacity of
human working memory. Moreover, our mind cannot logically or intuitively envi-
sion the consequences of nonlinear operations repeated several times in sequence.
In addition, traditional methods of theoretical analysis in mathematics are difficult
to apply to complex, nonlinear high-dimensional dynamic models. In particular, a
large system of coupled nonlinear ODEs embedded in a large spatiotemporal grid,
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as needed in the modeling of, for example, the human heart, can be extremely diffi-
cult to assess and overview (and can also be cumbersome to compute). Looking at
graphs of the behavior of such models under a certain condition is easier. It is even
more informative to look at comprehensive summaries of the behavior of a model
under many different conditions. Multivariate metamodeling holds a potential for
summarizing all the most important aspects of a complex model’s behavior, in a
way that does not mentally swamp the scientist.

1.2 PLS Regression Metamodels of Nonlinear Dynamic Models

This paper is a progress report from our ongoing development and use of Chemo-
metrics methods for modeling of systems that change over time. We shall show how
PLS regression (PLSR, [40]) and its historical “ancestor method,” principal com-
ponent analysis (PCA, [7]) can give interpretable, quantitative dynamic subspace
models of various sorts. Our experience till now ([22, 34, 35, 37]) is that PLS-based
multivariate metamodeling offers several benefits to the developers of and to the
users of large, mechanistic models in general. This is also confirmed by, for exam-
ple, Sobie’s use of PLS regression in sensitivity analysis and in constraining model
parameters ([29, 30]). But since dynamic models of biological mechanisms are of-
ten highly nonlinear, we have found it advantageous to extend the PLS regression in
various ways in order to handle strong nonlinearities. This will be illustrated below.
A mathematical model M may be symbolized as

Outputs = M (Inputs) (1)

where the inputs represent model parameters and initial conditions, and the outputs
represent simulated “phenotypes” or properties, often in terms of spatial and/or tem-
poral data. Contemporary mathematical models M of, for example, the function of
the heart are nonlinear and heterogeneous, and have complicated dynamics at sev-
eral different spatiotemporal scales. Such high-dimensional models, with numerous
nonlinear positive and negative feedback structures, are too complex for classical
mathematical analysis, and their behavior is therefore difficult to predict theoreti-
cally. Hence, contemporary mechanistic models M are not only slow to compute,
but also difficult to define, overview, control, compare, and improve. This is a typical
arena where multivariate metamodeling is useful. What is a metamodel? It is a sim-
ple model of a complex model: a simplified statistical description of the behavior of
a complicated mathematical model. It is sometimes also called a “surrogate model”
[6]. For scientist developing or using a large, complicated mechanistic model M
of, say, a complex biological system, a metamodel is an approximation model (A )
that summarizes the behavior of M in a way that relates different inputs to differ-
ent outputs. In general, a complex model M will have a number of intermediate and
output variables that represent necessary steps in the computation of M , but that are
of little interest for the modeler and/or little relevance for a given application of the
model. In the metamodel A irrelevant variables are down-weighted and variables
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that co-vary are lumped together. Moreover, the original model M may contain
computationally slow model elements, which may be replaced by computationally
fast approximations in metamodel A .

A multivariate metamodel is obtained in two steps:

• Extensive simulations with M to probe the desired ranges in the input parame-
ters (all relevant input combinations) and record all relevant outputs (including
intermediates). This results in large tables of input and output data.

• Analysis of the obtained input and output data from M , more or less as if they
were normal empirical data.

Multivariate metamodeling of a model M may be used for a wide range of pur-
poses. Traditionally it was primarily used for sensitivity analysis and computational
speed-up [4, 5, 12, 28]. But it can also be used to discover “hidden” patterns of co-
variation in the model, to simplify models, to compare different models or to fit a
model to empirical data. In each case a multivariate metamodel A summarizes and
reveals what model M has really been doing, seen from a certain perspective and
stated purposes, and limited to the conditions tested in the simulations. Different
types of multivariate metamodels A may be developed to reveal different aspects
of model M . The main distinction is between:

simple output metamodeling: Outputs = f (Outputs)
classical metamodeling: Outputs = f (Inputs)

and

inverse metamodeling: Inputs = f (Outputs).

But explicitly dynamic metamodels are also informative, for example:

autoregressive metamodeling: Outputst = now= f (Outputst = past)

and

ODE metamodeling: Output ratest = f (Output statest ).

The different metamodel types, alone or in combination, give insight into how
the original model M behaves in practice. That can be quite different from what
is apparent when simply looking at the mathematical equations that constitute M .
Thus, through multivariate metamodeling, theory-driven models (M ), built deduc-
tively and bottom-up, may for many purposes be illuminated—and sometimes even
replaced by—one or more data-driven models (A ), built inductively and top-down.

Many different statistical methods for supervised and unsupervised learning may
be used successfully for multivariate metamodeling. We have found that various
versions of PLSR (see, e.g., [18]) are particularly well suited, due to their simplic-
ity and versatility. When optimized with cross-validation/jackknifing ([19, 31]) and
displayed in extensive graphics, multivariate metamodeling provides interpretable
linear subspace models with excellent predictive validity. These PLS-based approxi-
mation models can improve insight and overview as well as predictive precision and
computational speed-up. Our metamodeling development till now has focused on
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relatively simple models from bio-spectroscopy [13] and physiology (see below).
But the PLS-based multivariate metamodeling techniques are generic and we expect
them to be useful also for more complex models and in other application fields.

Today, we have a range of tools for cost-effective designs for computer experi-
ments ([23, 34, 41]) and a versatile family of PLS-based regression methods for han-
dling high-dimensional, rank deficient, and sometimes N-way simulation data, often
with highly nonlinear input/output relationships ([20, 34, 36, 37]). In the following,
some aspects of PCA and PLS-based metamodeling will be illustrated through ex-
amples. We shall here outline the general development of PLS-based metamodeling,
and focus on various ways to use it for time-dependent modeling. Then we shall
outline some cognitive differences between mathematical modeling of mechanisms
(M ) and statistical approximation modeling (A ), and list some relevant metaphors
used in dealing scientifically with the concept of time.

1.3 PCA and PLSR Similar to Taylor Expansions of Model M ?

First, we shall discuss how a bilinear PCA and PLS-based metamodel A may be
regarded as a generalized series-expansion of its target model M . This series ex-
pansion is not obtained by traditional Taylor-expansion of M (deriving a cumber-
some sequence of derivatives of M ), but by a much simpler approach: structured
computer simulations, followed by multivariate self-modeling (A ) that is similar to
a truncated Taylor-expansion of M , based on the simulation results.

Prior to the development of PLSR, in Chemometrics—like in many other fields—
the main tool for quantitative approximation of large data matrices was PCA. PLSR

and PCA share many properties: they both rely on so-called bilinear subspace mod-
eling. PCA is still a very useful tool for exploratory data modeling, as an example
from biotechnological process dynamics in this section will show. However, PCA

and PLSR are often used for more or less assumption-free self-modeling of data ta-
bles. Thus they represent a data-driven paradigm very different from that of theory-
driven mechanistic modeling. How can the two paradigms be reconciled? Let us
start with PCA, the simplest bilinear method.

Usually, measured variables from real-world systems are more or less inter-
correlated: they share common patterns in how they vary from sample to sample.
This makes it easier to distinguish interesting signals from uninteresting noise in
data, which we may expect to be random and uncorrelated. Valid signal patterns—
the variations that we are usually interested in—have often been caused by shared
causal structures, affecting two or more variables. The causal structure behind any
two-way data matrix D (of order n× p) may generally be written:

D = f (gi,hk)+ ε (2)

where gi and hk are functions of two types of causal phenomena, affecting the rows
(objects) with index i= 1,2, . . . ,n and columns (variables) with index k = 1,2, . . . , p,
respectively, and where ε represents the uninteresting, presumably random, error.
There may be several such sets of underlying (latent) functional causes:



PLS-Based Multivariate Metamodeling of Dynamic Systems 9

D = f
(
gi,1,hk,1,gi,2,hk,2, . . .

)
+ ε (3)

Usually, the nature of some, or all, of these causes gi,a,hk,a, a = 1,2, . . . are un-
known to us. But provided that sufficiently many informative variables have been
measured in sufficiently many informative objects or generated by simulation under
sufficiently many conditions, we can discover a lot about these unknown phenomena
by PCA.

Prior to the analysis, the input data D are usually preprocessed to improve linear-
ity and remove known interferences. To balance the different types of variables in
the data, they are then scaled to comparable units to generate a data table X.

In PCA, the matrix X is mean-centered and decomposed by the so-called singular
value decomposition to identify its singular values and orthonormal left-hand and
right-hand singular vectors (i.e., the eigenvectors of mean-centered XXT and XTX,
respectively, with T denoting the transpose operation). Based on, for example, cross-
validation or common sense, the number of statistically valid principal components,
A, is determined, and the bilinear approximation model of PCA is set up as:

X = x0 +
A

∑
a=1

(
tapT

a

)
+EA = x0 +TAPT

A +EA (4)

where x0 represents a center vector (i.e., a mean vector or centroid) around which
the bilinear model is developed. The so-called “scores” TA = [t1, t2, . . . , tA] represent
the left-hand singular vectors, scaled by their relative importance (their singular val-
ues) that define the main patterns of co-variation in the objects (i.e., the rows of X).
The “loadings” PA = [p1,p2, . . . ,pA] represent the corresponding right-hand singular
vectors, and show how these patterns manifest themselves in the different variables
(columns). The matrix EA represents the unmodeled residual, presumably contain-
ing small, unsystematic and uninteresting errors etc. PCA, which may be considered
as the “mother of all multivariate data modeling methods,” has for many years been
the first choice for overviewing a single table of empirical data X. However, PCA is
equally useful for summarizing variation patterns in tables of simulation data from
computer experiments. Two, or three, dimensional plots of the first few principal
components are usually very informative and easy to understand. But is this prag-
matic data-approximation model from Eq. 4 a proper scientific model? Our answer
is “yes,” based on our own practical experience as well as on the following theoret-
ical basis.

Svante Wold, a highly productive Nestor in Chemometrics, showed that a PCA

solution, consisting of the sum of the first few principal components, may be seen
as a truncated Taylor expansion of whatever multivariate causal structures (known
or unknown) have given rise to X which is the two-way data table at hand ([39]).
Model-based approximation is an essential activity in science. It is interesting to
note that Robert Rosen wrote that the standard practice of truncation “is a good
example of modeling within mathematics,” and showed that this applies to Taylor
series expansion ([27], pp. 78–9). Hence, this must apply for PCA as well.

Moreover, Rosen discussed the special case when one of the ways of the available
data represents time. He showed that Taylor’s theorem for truncated series expan-
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sion of time series data has some fundamental properties in linking diachrony (what
happens over an extended series of instances) to synchrony (what happens at a sin-
gle instance), and also to something very much like recursivity (a concept central
to scientific thinking). Hence, one may expect Rosen’s positive evaluation of trun-
cated Taylor expansions to apply equally well to PCA of multivariate time series.
Two-block PLSR provides models of the type Y≈ f (X). This is slightly more com-
plicated than the one-block PCA, in the sense that PLSR defines the bilinear model
of X from a sequence of one-component eigen-analyses of previously unmodeled
XTYYTX, instead of one joint eigen-analysis of XTX. A number of different algo-
rithmic formulations of this PLSR modeling process exists. While not yet proven,
we expect it to be possible to show that PLSR represents some sort of multivariate
Taylor expansion of a function of X and Y, in a way that reflects their underlying,
unknown causal relation. Let that be a challenge of the next PLS generation!

1.4 PCA Modeling of a Multivariate Dynamic System

An introductory example will now be given. It is analogous to simple output meta-
modeling, but based on real process measurements. The purpose is to show how a
complex dynamic system with highly nonlinear behavior can be inspected and quan-
tified in terms of its underlying systematic structure. The main “factors” (“variation
phenomena”) are summarized as abstract “components” in a bilinear model by PCA.
In this case the data come from a real-world industrial process, and consist of high-
dimensional spectral measurements. Figure 2a (see, [21]) shows the multichannel
infrared spectra of a biotechnological batch fermentation process, read at more or
less regular intervals over a 26 h period. These data were submitted to PCA analysis.

Figure 2b shows the scores for the first three PCA components. It is obvious that
the process passes from time = 0 till time = 26 h through several distinct phases,
leading from initial state profile S1 via state profiles near “intermediate end state
profiles” S2, S3 and S4 to its final state S5. Each of the reaction phases provides a
gradual transition from one state to the next. The nature of these five states is un-
known, but was assumed to reflect a sequential depletion of various carbon sources
in the growth medium. The spacing of regular observation points along the trajec-
tory shows that the speed of the process varies considerably.

Quantitative information about these five process state profiles S1–S5 was gained
by post-processing of the orthogonal PCA solution from Fig. 2b. The rotational am-
biguity of the PCA solution was here overcome by “simplex intersect” between tra-
jectory extrapolations (see [16]) after 2, 19, and 21.5 h, as shown in Fig. 2b. The
characteristic infrared spectra S = [S1 S2 S3 S4 S5] of the initial, intermediate and fi-
nal end states were thus estimated. From these, the process dynamics was quantified
in terms of its initial condition profile S1 and a sequence of linear directions (S2−S1,
S3−S2, S4−S3 and S5−S4) in which the process moves in the state space (Fig. 2c).
By regressing the observed spectra in X on the five estimated state profiles S, the
“concentration” levels C = [c1,c2,c3,c4,c5] (i.e., the “constituent concentrations”)
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of these five unknown state variables, could be quantified at each point in time, by
linear “unmixing.” The concentrations are shown as conventional functions of time
in Fig. 2d.

The important message in this illustration is that the bilinear scores in Fig. 2b
and the reformulated subspace information in Fig. 2c, d show how detailed infor-
mation can be gained about a complicated, multi-phase dynamic process, simply
by bilinear decomposition of multivariate process observations, without any prior
theory. The time series data represented a lot of “snapshots,” but time as such was
not treated explicitly in the modeling. Instead, the clear covariance of the measured
spectral variables allowed the exploratory metamodeling process to automatically
isolate the systematic, interesting co-variation patterns (eigen-structures) in a sim-
ple subspace model, leaving out most of the uninteresting noise etc. This simple
subspace could then be reformulated into a tentative mixture model. PCA is equally
applicable to the visualization and checking of outputs from computer simulations,
and thus represents our first choice for simple output metamodeling.

While the present data were obtained from a real-world process, the same ap-
proach can also be used to reveal unexpected nonlinear trajectory patterns in the
output from a nonlinear dynamic model, obtained by computer simulations. This
will be demonstrated below, using the more powerful bilinear method of PLS re-
gression.

1.5 PLSR as a Predictive Approximation Method

Partial least squares regression was developed from PCA and its extension principal
component regression (PCR), for relating two sets of variables, X (an n× p matrix)
and Y (an n×q matrix), when both have been observed for the same set of n objects.
Like X (see Eq. 4), matrix Y is approximated in terms of a bilinear model:

Y = y0 +TAQT
A +FA (5)

�
:Fig. 2: (continued) Self-modeling of a dynamic process from Chemometrics (From
[21]). (a) An industrial milk fermentation process was monitored more or less con-
tinuously for 26 h by a multi-channel infrared spectrophotometer at many different
wave-number channels between 900 and 1,600 cm-1, displayed as scattering cor-
rected absorbance spectra. (b) State subspace plot: Bi-linear data-driven modeling
(PCA) of the absorbance spectra showed three main variation types, whose orthog-
onal temporal scores are plotted here. The profiles of intermediate end states S2, S3

and S4 were estimated by extrapolation according to the simplex intersect method
(see [16]). (c) Multivariate description of the main types of process dynamics: The
initial state profile S1 and the four subsequent average rate profiles S2−S1, S2−S3,
S3−S4, S4−S5. (d) Time series of state variables corresponding to S1–S5, estimated
by linear unmixing (see [18])
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where y0 represents the model center (i.e., the mean), QA is the coupling between
the input variables in Y and the A components TA, and FA contains the unmodeled
residuals. But it should be noted that TA—the sequence of the A orthogonal PLS

components (PCs)—is defined as a function of X, not of Y:

TA = (X− x0)VA (6)

where VA (a p×A matrix) represents the estimated weights. Therefore the model of
Y may equivalently be written

Y = b0A +XBA +FA (7)

with BA = VAQT
A and b0A = y0− x0BA. In other words: with this model, Y can be

predicted directly from X but not vice versa.
The difference between PCA/PCR and PLSR is simply that, in PCA and PCR, the

weights VA are defined to explain maximal covariance within X, while in PLSR, the
weights VA are defined to explain maximal covariance between X and Y.

PLSR was originally published ([38]) for multivariate calibration, (i.e., to facili-
tate the conversion of low-cost, non-selective input variables X into selective output
predictions of high-cost variables Y, see [18]). Very soon, however, it was employed
also for a wide range of other purposes, from classical analysis of variance and in-
verse discriminant analysis, via classical mixture modeling and inverse multivariate
calibration to time series analysis. A number of extensions of the basic PLSR have
since been published. For instance, various PLS extensions are now used for relating
several types data tables, such as multi-block and multi-matrix PLS regressions and
several different sets of variables and/or objects have been measured.

We have found the N-way extension of PLSR [1, 2] particularly useful in meta-
modeling of models that give 3-way outputs (conditions × times × “phenotype”
properties), along with various nonlinear PLSR extensions. In the following, we out-
line some of the metamodeling published with the use of PLS-regression and exten-
sions thereof.

2 Dynamic Multivariate Metamodeling

2.1 Metamodeling of Dynamic Processes

A multivariate time series of the state variables in a process requires that the math-
ematical model is first defined in terms of its algebraic structure, parameter values
and initial states. Then the model is run in a recursion algorithm or in numerical inte-
gration, for sufficient time to generate simulated time series of the internal state vari-
ables xt . The full vector of state variables xt may contain both properties (“how?”)
and physical coordinates (“where?”), such as chemical concentrations and 3D spa-
tial positions, at time t. These simulated vectors of states xt and their rates ẋt =

dxt
dt

may then be studied as functions of time, to understand the system’s behavior.
Often, the internal states of a complex system, represented by the state variables

in the dynamic model M , cannot be measured directly (because of measurement
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errors and selectivity problems). But with a suitable transfer function, the state
variables xt can be transformed into predictions of what can be measured empir-
ically, yt . These predictions can then be compared to actual measurements of yt ,
and a lack-of-fit criterion defined. To find the right model for M and to estimate
the optimal set of parameter values for a given system, this lack-of-fit criterion is
minimized by repeating the simulation and it has to be repeated again and again.
Traditionally, this has been a very tedious and difficult process.

Apparently, multivariate metamodeling can reduce this problem, since bilinear
predictive metamodels, once established by simulation/regression, are much faster
to run than large nonlinear ODE/PDE-based models, and a much larger number of
combinations of parameter values can therefore be explored. Moreover, the meta-
models produce effective measures of the sensitivity of the original differential
equation model to the different model inputs and give maps of the correlation pat-
terns between the different variables of the systems that are easy to overview and
interpret. Metamodels may also be used directly to predict parameter values from
experimental data. The following examples will show how PLSR extensions can be
applied in various ways to the time domain. The first one is an illustration of autore-
gressive metamodeling.

2.2 PLS-Based Analysis of a Near-Chaotic Recursive System

The end of the eighties was perceived by many scientists as a post-modern revo-
lution against what was considered as an overly reductive modeling tradition, ide-
alizing classical physics, which had developed along with the modernism in west-
ern culture at large over the last century. Suddenly, a number of books on fractals,
sensitivity to initial condition, positive feedback, cooperative processes, chaos and
self-organization emerged. They demonstrated that apparently random processes—
some of astonishing beauty—could be generated by deterministic sources in even
very simple dynamic systems. This gave many “soft scientists” the courage to pur-
sue “hard” sciences while maintaining respect for the complexity of reality.

This renewed scientific pragmatism, humility, and optimism corresponded well
to the ethos already established in Chemometrics over the previous two decades, so
many of us embraced it gladly. High computational capacity became available to
anyone who wanted it and research funding was plentiful. This called for playful
experimentation with models. On the other hand, the danger of fluffy philosophy
and uncritical use of scientific concepts became clear: scientific focus on simplicity,
interpretability, and reproducibility was needed now more than ever. And today’s
problems in communicating nonlinear mathematics to non-mathematical biologists
were even greater then.

Per definition, the behavior of a chaotic process cannot be predicted very far into
the future. But high-dimensional dynamic systems may have both chaotic and non-
chaotic dimensions. Moreover, chaotic processes may sometimes be successfully
forecast for a short time. From observations of a given system, how well can such
short-term forecasting be expected to be?
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Fig. 3: An early foray into “soft” PLS-based metamodeling of a “hard” mathematical
model: autoregressive PLSR forecasting in a near-chaotic system The simulated time
series outputs from a highly nonlinear process model (a production process affected
by a recursive Verhulst dynamics process) run under three different conditions
(parameter a in Eq. 8 was equal to 2.625, 2.615, and 2.605, respectively). (a–
c) Future value yt+1 forecast from present and past measurements xt + d, d =
0,1,2, . . . ,14 for the three conditions. (d–f) The scores of the three first PLS PCs,
showing the trajectory of the process for the three conditions: (a) a near chaotic
process. (b) a complicated limit cycle. (c) a fixed set of states repeatedly visited
(vertically connected, for visual clarity) (From [17])

Figure 3 shows our first, feeble PLS-based analysis of the behavior of a highly
nonlinear dynamic model, to test the possibility of forecasting future behavior of a
complex system from present and past measurements. The following example was
developed for an audience of applied process monitoring scientists: A hypotheti-
cal process was created so as to display three different degrees of complexity in
its behavior. The purely computational example was designed to illustrate a hypo-
thetical industrial whose profitability yt was affected by variations in the quality of
its product, xt , over time t = 0,1,2, . . . , according to some “unknown,” underlying
model M . The question was: Can we forecast tomorrow’s profitability yt+1 from
measurements of today’s and yesterday’s quality xt , xt−1, xt−2, . . . ?
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Technically, the “unknown” process model M was based on simple recursive
Verhulst dynamics, generating the so-called “logistic map:” For a given state vari-
able x, the state at a discrete future time point t + 1 is defined from its value at the
previous discrete time point, t as

xt+1 = a · xt · (1− xt). (8)

This recursive model is known to create varying degrees of complex behavior for
different values of parameter a. Computer simulations were performed with three
different values of parameter a known to generate quite different temporal behavior
patterns. These values were chosen to represent the process in three different “pro-
duction periods.” For each production period, the recursion in Eq. 8 was repeated
300 times (300 time points or “production days”) from a fixed initial value of xt = 0.
Profitability yt was then defined as a function of xt at each day t = 0,1,2, . . . ,300
(for simplicity, an additional spectroscopic expansion of model M in the original
simulation based on linear multivariate calibration is ignored here, as it is irrelevant
to the dynamic modeling).

The challenge was to learn to forecast tomorrow’s unknown profitability yt+1

from today’s known vector of present and past quality variations [xt , xt−1, xt−2, . . . ,
xt−K ]. A time-shifted PLS-based prediction model was developed to learn how to
predict today’s known profitability yt from yesterday’s vector of quality variations:
yt = f

(
[xt−1,xt−2, . . . ,xt−(K+1)]

)
, based on the 150 first time points t = 1, . . . ,150.

Conventional, un-weighted PLS regression was used, for regressing vector y (of or-
der 150× 1) on the matrix of the quality assessments X (of order 150× 15) at the
K = 15 previous days. Full cross-validation showed that three major and four minor
PLS components were required to attain minimal error when forecasting y from X.

Once the prediction model had been established, it was used to forecast to-
morrow’s profitability from today’s vector of known quality variations: yt+1 =
f ([xt ,xt−1,xt−2, . . . ,xt−15]), for each of the next time points t = 151,152, . . . ,300.
This was done for each of the three production periods. The resulting forecasting
ability of the three production periods is shown in Fig. 3a–c. While the forecasts are
not perfect, the results are quite good, given the erratically-looking raw time series
from the Verhulst dynamics (not shown here).

However, the forecasts showed different structures for the three production pe-
riods. To shed more light on the nature of these differences, the scores for the first
three PLS components were plotted for all 300 production days, to reveal the tra-
jectories of the process. These are displayed in Fig. 3a–c for each of the three pro-
duction periods, respectively. In all three cases, the process state is seen to wobble
between two quite distinct regions. Within each of these two regions, the degree of
complexity depended on the value of parameter a. In Fig. 3a it was very complex
(two “strange attractors?”). At the intermediate value of a, the process settled in a
complicated limit cycle (see Fig. 3b). The third value of the model parameter made
the process repeatedly visit a limited number of discrete states (i.e., like a periodic
attractor, see Fig. 3c). Hence, the complex Verhulst process generated some more
or less “chaotic” behaviors in model M . But in each case, the purely data-driven
metamodels A —obtained by reduced-rank PLS-based autoregressive modeling—
revealed clear trajectory patterns.
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This continuous-process simulation example in Fig. 3 showed us that—as
expected—time-shift PLS regression of multichannel data from an unknown, highly
nonlinear process may reveal complex, but systematic trajectory patterns, even in
the absence of any causal mathematical theory. The score plots of the most relevant
dynamic behavior of the system (Fig. 3d–f) as seen by autoregressive PLSR might
have been difficult with traditional autoregressive time series analysis.

2.3 Data-Driven Development of the Essential Dynamical
Model Kernel

The next example is an illustration of ODE metamodeling: To what extent would it
be possible to formulate an explicit mathematical model from time series data? Can
a PLS-based model be found that captures the essence of the systematic dynamics
of the system, and would that obtained model be meaningful and not misleading?

Figure 4 shows a time-series oriented PLS-based metamodeling, presented at the
PLS2009 meeting in Beijing [20]. The topic here was to see if it were possible to
develop a meaningful dynamic model of the mechanisms controlling an unknown
process, based on PLS regression of a limited amount of empirical time series data.
In other words, using a “secret” nonlinear mechanistic models M to generate time
series data by simulation, is it possible to use only these time series data to develop a
metamodel A that in turn can reconstruct M , or at least a nonlinear dynamic model
that catches the essence of M and has similar behavior as M under the conditions
simulated?

In this case the “unknown” model M was defined in terms of a “secret” non-
linear dynamic model relating three state variables x1, x2, x3 to each other. When
integrated numerically over n points in time, the model generated an “observed”
time series data table of size (n× 3). The model M was a simple ODE, in which
each of the three variables’ rates dxk

dt , k = 1,2,3, could be related to all three state
variables x1, x2, x3. To complicate matters, the ODEs in M were defined in a way
that mimics biological complexity: the state-to-rate mechanisms were not constant:
they depended on the process state itself (i.e., on its position [x1, x2, x3] in the three-
dimensional state space).

A fractional factorial 23−1 design was used for defining four different sets of
the initial state vector x0 = (x01,x02,x03), from which the model M was integrated
numerically. Both the structure and parameter values of the model M were kept
“secret” from the first author, who only did the metamodeling based on the time
series data only.

From these data, a PLS-based regression model of rates = f (states) was devel-
oped, relating rates

ẋt =

[
dx1,t

dt
,

dx2,t

dt
dx3,t

dt

]
(9)

to states
xt = [x1,t ,x2,t ,x3,t ] , t = 0,1, . . . ,100. (10)
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Fig. 4: Data-driven generation of nonlinear differential equation (ODE) system. Ex-
ample of nonlinear (nominal-level) PLS regression. A complex system is here to be
characterized in terms of a nonlinear dynamic mathematical model, linking three
state variables. The input data consisted of four sets of time series, each containing
them time series of the three different state variables obtained by numerical integra-
tion for a new set of initial states. Each of the 3 state variables were split into 20
category variables (white = 1, dark = 0) and the set of these 60 nominal variables
were together used as X-variables. The three state variables were also differenti-
ated with respect to time, and used as three Y-variables. Conventional PLS regres-
sion was employed based on the linear model of rates = f (states), (i.e., Y ≈ XB).
Cross-validation showed that four PCs gave optimal prediction of rates Y from state
categories X. The nominal-level regression coefficients B at optimal PLS regression
rank was finally split to show how different levels of each of the tree states affected
each of the three rates (From [20])

If the underlying model had been known to be of the constant, linear type, the true,
unknown ẋt = f (xt ) would have been the same, irrespective of the values in xt :

ẋt = xJ (11)

where the elements of the so-called Jacobian (i.e., the 3× 3 matrix J) control the
dynamic behavior of the system. This constant Jacobian could then have been esti-
mated by conventional linear regression, namely by defining
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Y =

[
dx1,t

dt
,

dx2,t

dt
,

dx3,t

dt

]
, t = 0,2, . . . ,n (12)

and
X = [x1,t ,x2,t ,x3,t ] , t = 0,1, . . . ,n. (13)

The regression coefficients in a full rank linear regression (and hence a PLSR model
with A = 3 components in Eq. 7) would yield estimates of the Jacobian matrix:

Ĵ = B̂A=3. (14)

In addition, estimates of the uncertainty standard deviations of the regression coef-
ficients could have been used for estimating confidence intervals of the elements in
the Jacobian.

However, in order to handle possibly nonlinear individual rate j = f (statek) rela-
tionships, where the rates are not fixed for the system but instead change with the
levels of the state variables, a nonlinear version of PLSR was needed. A second-order
polynomial extension of X was tried, but did not give satisfactory results: obviously
the nonlinearity at play here was not of the simple second-degree type.

So a more versatile non-linear PLSR version was developed instead (a balanced
nominal-level PLSR): Instead of using the three original state variables directly as
regressors, each of the three state variables was split into 20 category variables,
and the resulting 3× 20 = 60 0/1-variables were used as regressors X (see, e.g.,
Fig. 4). Cross-validation was used for determining the optimal model rank A, and
the “local Jacobian” matrix was obtained by partitioning the resulting nominal-level
PLS regression coefficient matrix BA as illustrated in Fig. 4.

We expected the nominal-level PLSR to yield an ODE model with good predic-
tive ability, but not necessarily the “true” model. However, as it turned out, the
partitioned regression coefficient matrix B̂A showed—to our surprise—a structure
closely resembling the correct, “unknown” model form. In other words, in this par-
ticular case, the unknown model M was very well identified from the time series
data only, both in terms of sign and curvature, within the estimated confidence lim-
its. The true “unknown” model M had been defined by the following rates of change
for the three state variables:

y1 = dx1
dt = −x1 −1− S(x2) +0

y2 = dx2
dt = S(x1) −x2 +0

y3 = dx3
dt = 0 +S(x2) −x3

(15)

where S(.) defines a positive sigmoid (Hill) curve. The regression coefficients in
Fig. 4 show that flat, near-zero curves were obtained for the non-existing rate-state
y j
xk

relationships y1
x3

, y2
x3

, and y1
x1

(marked by 0 in Eq. 15). Positive sigmoids were

found for relationships y2
x1

, y3
x2

, and a negative sigmoid for y1
x2

, as specified in Eq. 15.
Constant negative relationships were found for the self-degradation terms y1

x1
, y2

x2
,

and y3
x3

again as expected.
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To what extent was this unambiguous result caused by luck, or by the fact that
the time series data were error free and highly informative? This experiment was
repeated for five other “unknown” models, with the same result. Apparently, in these
cases the time series data had sufficient information to constrain the system more or
less completely. Using time series from more than just four initial conditions gave
the same conclusion, with even smaller jackknife estimated parameter uncertainties.

In general we believe that one cannot expect a purely data-driven nominal-level
PLSR-based time series analysis to be able to identify nonlinear dynamic systems
completely. In very “sloppy,” or over-parameterized, models one must expect am-
biguity in empirical metamodeling solutions. But we do expect it to be possible
to identify the relevant dynamic “essence” of an unknown nonlinear dynamic sys-
tem, based on sufficiently informative, multivariate time-series data. This might give
useful hints for how to model complex real-world systems (e.g., patients), from the
analysis of time series data obtained by extensive monitoring with multichannel in-
strumentation. It might also be useful for reducing a large, overly detailed mathemat-
ical model M , by determining which elements in M are essential and which may
be safely ignored. Work is now in progress [33] to elucidate the ambiguity in fitting
a given nonlinear dynamic model M to empirical time series data. Our preliminary
results show that if a given non-linear dynamic model is over-parameterized rela-
tive to the information content in the available time series data, highly ambiguous
parameter estimates can be obtained. For instance, for a set of error-free time series
data, we were able to find a wide range of different parameter combinations that
gave perfect fit. In addition, it seems that such sets of equivalent parameter combi-
nations are highly structured.

That corresponds well with our previous studies of metamodeling of models gen-
erating curved temporal developments [10]. There, the “opposite” metamodeling
process was employed. About 40 different mathematical models of widely differ-
ent types, ranging from trigonometric functions, cumulative statistical distributions,
growth curves, kinetic models and ODEs, each capable of generating widely differ-
ent line curvatures (arches, sigmoid, etc.), were defined. Each of them was submit-
ted to extensive computer simulations. When their thousands of output curves were
combined in one very big data matrix and approximated by a PCA-based metamodel,
the results showed that the behavioral repertoire of all 40 models could be fitted into
one joint, simple “kernel” model. It appears that the behavior of this class of non-
linear mathematical models is far simpler than the diversity of mathematical forms
within the class.

2.4 Dynamic Metamodeling of 3-Way Output Structures

For mathematical models whose output phenotypes have spatiotemporal character,
the obtained output data come in an N-way array format (e.g., p state variable phe-
notypes × q points in space × m points in time × n input conditions). Can the
good performance of bilinear approximation methods like PCA and PLSR analysis
of two-way data tables be carried to data arrays with more than two ways?
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The last example illustrates the use of N−PLS [1–3] in inverse multivariate meta-
modeling. We have recently extended this method to handle highly nonlinear input-
output relationships, as an analogy to the so-called Hierarchical Cluster-based PLSR

(HC-PLSR, [35, 37]). The purpose of this two-step extension is to obtain improved
predictive ability and increased insight into the input-output relationships for mod-
els with too complicated input-output relations to be approximated by normal PLS

regression. In the first step in HC-PLSR, all the observations are used together, to de-
velop one joint, “global” PLSR model. To pick up simple, smooth nonlinearities, this
global PLSR step may be of the “polynomial” type, (i.e., it may optionally employ
squares and cross-products of the original X-variables as extra X-variables).

To pick up more abrupt, drastic nonlinearities and other heterogeneities in the
model’s input-output relationship, the PLSR for the metamodeling is extended in a
second step as follows: Based on a clustering on the scores from the first, global
PLSR model, the objects are separated into local groups with more homogeneous,
linear structures. For each such cluster of objects, a local PLSR submodel is then
developed. To apply this hierarchical combination model to new observations, the
new objects are first classified in X with respect to the submodels, and then Y is
predicted from X via the submodels, either based on only the closest local submodel,
or by a weighted sum of the predictions from all the relevant local submodels, with
the cluster membership probabilities as weights. Thereby even abrupt nonlinearities
can be successfully modeled.

The same type of two-step hierarchical clustering extension will now be illus-
trated for N− PLS regression. Figure 5 illustrates the use of Hierarchical Cluster-
based N− PLS for inverse metamodeling of a complicated, state-of-the-art dynamic
model M of the mammalian circadian clock (i.e., our biological day/night clock,
[36]). The model contains a number of nonlinear ODE elements, coupled together
in a complicated feedback structure. It was found that model M with different in-
put parameters gave a wide range of output patterns. A preliminary, global inverse
N − PLS regression Aglobal gave the score plot in Fig. 5a. Here, each point actu-
ally represents a whole table multivariate time series (16 output phenotypes given
at different timesteps in the simulation). This is an illustration of how multivariate
subspace analysis can compress temporal data.

However, the preliminary, global metamodel Aglobal did not fit the data well
enough and so it appears that the input-output relationship in model M did not
follow a simple additive structure. To obtain a simpler and better metamodeling, the
score plot in Fig. 5a was used for identifying six local, more easily modeled, subsets
of objects. In Fig. 5b the simulated time series outputs are color coded according
to this clustering. For each of these six clusters c = 1,2, . . . ,6, a local metamodel
Ac was developed, again by inverse N− PLS regression. This gave an informative
separation of the simulations according to the temporal response of the analyzed dy-
namic model M , and increased the predictive ability of the metamodel. Recently,
a polynomial version of the Hierarchical Cluster-based (2-way) PLS regression was
used in the converse direction for classical metamodeling for global hierarchical
sensitivity analysis [37]. This revealed complex parameter interaction patterns in a
model of the mouse heart muscle cell.
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Fig. 5: Time-dimension in hierarchical PLSR: N − PLSR. Example of hierarchical
N-way PLS regression used in inverse multivariate metamodeling of a dynamic
model. The results from a fuzzy clustering on the X-scores from an N− PLS-based
metamodel of a dynamic model of the mammalian circadian clock with six clusters
are shown (from [36]). (a) Plot of the X-scores for the first three factors (Factors 1–
3) from the global inverse metamodeling (where X is the 3-way state variable time
series array and Y is the parameter data). The clustering was done on the first 19
score factors. The observations are colored according to their cluster memberships.
(b) Circadian clock state variable time series for the observations belonging to each
cluster, colored according to the cluster memberships. All state variables are given
in nM units

Work is in progress to generalize and speed up the HC-based N − PLS regres-
sion modeling, based on N-way limitations pointed out by Wold ([39]) and on sug-
gestions in [18]. But already, Bro’s nonlinear N-way regression approach and its
N-way PCA-extension (“PARAFAC,” see [3]), appear to be versatile tools for meta-
modeling of nonlinear dynamic models. When implemented in the HC-based setting
(Fig. 5) and combined with nominal-level modeling (Fig. 4) in a sparse setting (see,
e.g., [9, 32]), we expect it to yield particularly simple metamodels, with reduced
risk of false discovery. Applied to dynamic time series data as in Figs. 2, 3, or 5b,
this approach can provide powerful “soft” multivariate metamodeling of “hard”
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mathematical models with high-dimensional spatiotemporal outputs. Hopefully, this
will contribute to the realization of Herman Wold’s vision for the integrative func-
tion of PLS methods (Fig. 1).

3 Discussion

Bilinear approximation: A proper science model? The low-rank structure models
obtained by bilinear data-modeling are often referred to as “mathematical models”
by PLS and PCA-practitioners. But for scientists trained in main-stream mechanistic
modeling, our pragmatic, unassuming use of the term “model” may be perceived
as alien. To what extent can bilinear approximation models be regarded as valid
scientific models?

Throughout the last century, Physics was more or less implicitly taken as the role
model by many other sciences. However, the traditional reductionist focus such as
in Physics for example, preferring simplicity, homogeneity and generality, has cre-
ated a wide-spread frustration among scientists working in more complex systems
such as living cells. A search is now on for new scientific paradigms that retain sci-
ence’s critical, quantitative ambitions but which allows more rational handling of
real-world systems. Robert Rosen ([27]) went as far as claiming that the life sci-
ences should from now on be the ideal, from which scientists—including future
physicists—should take inspiration. We share his vision. Herman Wold’s original
overview (see Fig. 1) indicates how the PLS principle could be used for interdisci-
plinary integration, particularly in the “holistic,” integrative scientific setting out-
lined by Munck ([25]). But at the same time we argue for the use of powerful data
analytic methodologies that can detect and quantify the mixture of known and un-
known phenomena characterizing complex systems, while guarding against wishful
thinking. And we recommend an increased use of mathematical modeling in the
life sciences, with respect to formalizing our understanding of how Biology works
(i.e., the dynamics of life itself). To simplify the mathematical modeling of com-
plex biological processes, metamodeling may be used, primarily because it gives
the scientists better control of the modeling process.

3.1 Cognitive Aspects of Temporal Modeling

The differences in models controlling scientists’ thought models, perceptions, and
practical use of mathematical modeling such as, for example, in Biology, are inter-
esting from a cognitive science perspective [24]. One major perceptual and cognitive
distinction appears to be whether a model is thought to describe the system from the
“outside” or from the “inside.” The difference in mental models in the two modeling
cultures of “external” and “internal” system representation is enormous.
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The “external,” data-driven modeling in computational Statistics and Chemo-
metrics is based inductively on empirical data: many properties described for many
objects or situations. It can give a valuable overview of complex systems in a certain
context, without the need for explicit causal theory or hypotheses. But the scope of
the modeling is limited to the range and reliability of the empirical data, and the
risk of false discovery can be high. Moreover, it reveals how the system appears
externally, but gives little or no feel for how the system really works internally.

On the other hand, the “internal,” theory-driven approach builds on a compact
thought model of how the mechanisms in a system work. It requires much less
new empirical data, since it builds primarily on theories or hypotheses derived from
previous, already digested experimental data. Of course, if the employed theory is
misleading then the mathematical model will also be misleading. Models are defined
for different purposes, ranging from small, strongly simplified models of specific
aspects of a system, to large models intended to give comprehensive, more or less
realistic representations of the system.

When it comes to the modeling of time-varying systems, “external” statistical
and Chemometrics analyses of observational data rely on more or less static models
to assess its dynamics: A system is characterized by a set of “snapshot” data de-
scribing sets of objects, individuals or situations separated in time and space, and
collected as time series data. These are summarized in terms of a statistical model,
capable of describing the system top-down with respect to its observed dynamic
behavior: “This is what we saw.” The time series data may be described (modeled
and/or plotted) in terms of their main intercorrelation structure (see Figs. 2b and 3)
or related to time itself (see Figs. 2d and 5b). But little or no attempt is made to
represent the system from the “inside”—formulating the causal mechanisms that
explain how it actually works—“what influences what and in which way?”

On the other hand, “internal” modeling approaches such as, for example, in com-
putational Biology, have the ambition of giving a deeper understanding of how
nature works. For this purpose, one employs explicit mathematical modeling of
spatiotemporal dynamics; the causality of the biological system is—tentatively—
described, from the “inside,” by a model M . Because time is not considered a cause
in itself, it is usually not parameterized explicitly; instead time is involved as in-
dex or argument t in the solutions describing the behavior of functions of t. These
“bottom up” models are intended to describe—more or less precisely—how mate-
rial, energy and information is obtained, utilized, and lost by the system. But this
approach requires extensive computer simulations and “external” data modeling to
see what the model is actually doing. Simple nonlinear dynamic models were em-
ployed to generate the data behind Figs. 3 and 4, while a full state-of-the-art model
generated the data for Fig. 5.



PLS-Based Multivariate Metamodeling of Dynamic Systems 25

3.2 Metaphors for Time

The second law of thermodynamics renders biological processes more or less irre-
versible. What happens at a given time in a given point in space will have conse-
quences at several other points at several later times. And these points may, in turn,
affect the initially given point again, forming feedback mechanisms with differ-
ent time delays. Thus “everything may be related to everything” though a complex,
time-varying web. To disentangle such a web of causalities and to distinguish causal-
ity from mere correlation is difficult [26] and may require intervention and a strict
temporal control. However, as the previous illustrations indicate, the cacophony in
data from a complex multivariate time series may be made more accessible by com-
pact graphical representations of its underlying rhythms and harmonies. These may
be identified by PLS based data modeling along the arrow of time, which can reveal
the important inter-correlations and time-delay patterns. The following introduction
to Fig. 3 was given (in 2008) by Martens and Martens [24]:

In the Norwegian language we use the word “tidsrom,” translating directly to “time-space,”
for the English word “time-span.” This time-space concept of course has nothing to do with
the four-dimensional time-space concepts of physics, consisting of three spatial and one
temporal dimension. “Tidsrom” is a pure time concept, but the word “rom” (space, room)
indicates that time somehow has more than one dimension in itself.

This corresponds well with concepts from modern nonlinear dynamics as well as with our
everyday experience. An object or phenomenon which on one time scale seems soft, pliable,
variable will on another timescale appear hard, unyielding, constant. You can swim in the
water, even dive into it, but you are knocked flat if you fall into it from an airplane.

Therefore objects or phenomena (holons) with long time constants act as the solid, fixed
framework of other holons with shorter time constants. Conversely, through the law of mass
action, myriads of holons with short time constants form an apparently solid (“average”) ba-
sis for the holons with longer time constants. It appears that this multivariate time structure
is an important factor in the grand self-organization of our existence.

In Biology, processes take place on widely different time scales, from the near-
instant passing of electrical fields between cells via the beating of the heart to the
evolution of the heart over eons. In computational Biology, separation of the time
scales is done by mathematical transformations from time to frequency, by spa-
tiotemporal averaging and differentiation etc. This means that biological models
may handle time in a variety of ways. One may argue that the difference between
envisioning/seeing a dynamic system from the “outside” or “inside” is in partic-
ular determined by how prior theory is balanced against new empirical data. But
distinctions may also be observed in how time is conceived.

How humans think about time is a matter of much interest in cognitive science,
and discrepancies in temporal thought models may cause interdisciplinary conflict.
The famous cognitive linguist George Lakoff and coworkers [15] have pointed out
how mathematics in general is based on bodily metaphors (i.e., “how the embodied
mind brings mathematics into being”). In particular, with respect to the mathemat-
ical handling of dynamics, Lakoff [14] once suggested that time can be understood
in three different metaphors: (1) Time coming towards you (as seen from the loco-
motive of a train); (2) Time leaving behind you (as seen from the last wagon of the
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train); (3) Time passing in front of you (as if a train is seen moving across a flat
landscape in the distance). His point was that each metaphor is useful, but mixing
two or more metaphors uncritically may create confusion.

Remaining in this domain of train-spotting, we tentatively add some more
metaphors: (4) Time moving along a trajectory, as a roller-coaster cart seen mov-
ing along its 3D track with t as a parameter (as opposed to the more linear metaphor
3, where time is thought of as an axis or variable); and (5) Time frozen as chronicles
(as looking at the train’s time table); (6) Time encapsulated in a train’s blueprint (a
model of the train’s engine and wheels). These six time-metaphors are summarized
in Table 1, with references to illustrations in this paper.

The choice of both the mathematical model form and graphical display mode
reflects how a process is thought of scientifically. These choices will, in turn, affect
the way results are perceived, interpreted, and remembered.

Generally speaking, time metaphors #1 and 2 are necessary steps in any dy-
namic study. But our perceptual and cognitive capacity is limited and so the other
metaphors are needed to identify and reveal the essentials of the system. We believe
that a conscious use of several of these metaphors can give access to a dynamical
process from different angles. This can reveal unexpected patterns of system behav-
ior inaccessible if using only one traditional time metaphors. Thereby it becomes
easier to use the fruitful combination of mathematical, theory-driven modeling and
statistical, data-driven modeling to its full advantage.

For instance, in model formulation, time may be used explicitly as a variable
under metaphor #3, symbolized by the letter “t” in mathematical models of the type

yt = f (t). (16)

The model form and parameter values of f (.) may be estimated from data or
chosen from theory. Once established, this function may be used in forecasting

yt, Future = f (t, Future) . (17)

Alternatively, the model formulation may, under metaphor #6, uses time only
as an index identifying observed variables yt or assumed state variables xt . The
interrelationships between these variables may then be quantified in various ways in
different scientific cultures: by purely empirical statistical time series analysis (e.g.,
ARMA) semi-empirical cybernetic process approximations (e.g., Kalman Filter) or
theory-driven causal mechanistic modeling (e.g., ODEs).

These three modeling traditions within the blueprint of metaphor #6 differ greatly
in scope and ambition. For instance, of the three, the mechanistic modeling may be
the more difficult, but has the highest ambition of description of the system deeply
from “inside.” Based on our experience till now, we believe that PLS-based method-
ology can contribute insight, stability and computational compaction in all three
cultures, by identifying a dynamic system’s relevant subspace dimensions and by
using these for statistically stable and graphically accessible system descriptions.

How time is used in graphical displays also affects what kind of information can
be gleaned from data (be it raw data or statistically obtained results). For instance,
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the way the axes are chosen and data points are represented in a bivariate plot can
affect the way the process is understood. Plotting time series variables with time
itself as “abscissa” (horizontal axis) represents metaphor # 3: a bird’s eye view of a
temporally continuous process, viewed from far away (Figs. 2d, 5b). This graphical
use of time makes the plots easy to read: using time as “x-axis” gives the mind a solid
“floor” to stand on. But this wastes 50 % of the 2D graphical dimension-capacity on
something that is already known: time. Plotting instead the time series data in a state
(sub-) space (metaphor # 4) allows the mind to see complex multivariate nonlinear
behaviors in the process trajectory and this can give a very different types of insight
(Figs. 2b, 3a–c).

4 Conclusions

Quantitative scientific knowledge is presently being accumulated in terms of large
repositories of measurements, ontologies and models. Mechanistic mathematical
modeling is increasingly employed to encapsulate scientific knowledge about com-
plex biological systems. Multivariate metamodeling, based on data from large, well-
designed computer simulations, can facilitate this modeling process, by making it
easier to overview what nonlinear dynamic models actually do, to compare alterna-
tive models, to reduce the computational load and to fit models to large amounts of
data from measurements and ontologies. With proper extensions for handling strong
non-linearities, PLS-regression and extensions thereof provide one useful alternative
for such metamodeling.

To facilitate communication between different science communities, one should
be aware of differences in how prior theory is employed, and in the metaphors used
for envisioning time.
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You Write, but Others Read: Common
Methodological Misunderstandings
in PLS and Related Methods

George A. Marcoulides and Wynne W. Chin

Abstract PLS and related methods are currently enjoying widespread popularity
in part due to the availability of easy to use computer programs that require very
little technical knowledge. Most of these methods focus on examining a fit function
with respect to a set of free or constrained parameters for a given collection of data
under certain assumptions. Although much has been written about the assumptions
underpinning these methods, many misconceptions are prevalent among users and
sometimes even appear in premier scholarly journals. In this chapter, we discuss
a variety of methodological misunderstandings that warrant careful consideration
before indiscriminately applying these methods.

Key words: Structural equation models, Path models, Confirmatory factor analy-
sis, Multiple regression, Path analysis, Covariance structure analysis, Latent class,
Mixture analysis, Equivalent models, Power, Model identification, Formative indi-
cators, Reflective indicators, Mode A, Mode B, Scale invariance

1 Introduction

We begin this section with a short story, which led to the central theme and focus
of the chapter. Not long ago, the first author received an action letter from a jour-
nal editor concerning a manuscript he had submitted for publication consideration.

G.A. Marcoulides (�)
Research Methods and Statistics, Graduate School of Education
and Interdepartmental Graduate Program in Management, A. Gary Anderson Graduate
School of Management, University of California, Riverside, CA 925121, USA
e-mail: georgem@ucr.edu

W.W. Chin
Department of Decision and Information Systems, C. T. Bauer College of Business,
University of Houston, Houston, TX 77204-6021, USA
e-mail: wchin@uh.edu

H. Abdi et al. (eds.), New Perspectives in Partial Least Squares and Related Methods,
Springer Proceedings in Mathematics & Statistics 56, DOI 10.1007/978-1-4614-8283-3 2,
© Springer Science+Business Media New York 2013

31

mailto:georgem@ucr.edu
mailto:wchin@uh.edu


32 G.A. Marcoulides and W.W. Chin

The editor was essentially asking for assistance in tackling a comment provided by
one of the manuscript reviewers. The reviewer’s comment specifically stated that
“. . . you did not do this analysis correctly you need to follow the procedures outline
in Marcoulides [1] . . ..” You can imagine the dismay, especially since the procedures
were not outlined in the article in the manner referenced by the reviewer. When the
editor was contacted and told that the original writings had been misunderstood by
the reviewer, he responded with instructions that “. . . perhaps you should write more
clearly next time . . .”

Interestingly enough, this experience mirrors one of our favorite passages pro-
vided by Galton [2] in his book Natural Inheritance:

. . . some people hate the name statistics, but I find them full of beauty and interest. When-
ever they are not brutalized, but delicately handled by the higher methods, and are warily
interpreted, their power dealing with complicated phenomena is extraordinary (p. 62).

Galton’s words are as à propos today as when he wrote them. Whenever issues
examined are complex, both theoretical and procedural, people with limited in-
formation and/or limited knowledge will likely develop misunderstandings. Like a
rumor that contains half-truths, conceptualizations and insights often contain par-
tially correct information. Unfortunately as characterizations of what constitutes
good research, they can often lead people away from important understandings (e.g.,
see the detailed commentary offered by Marcoulides, Chin, and Saunders [3] on
comparisons between various modeling techniques).

PLS, and related methods currently enjoy widespread popularity in the behav-
ioral, information, social, and educational sciences. The number of contributions
to the literature in terms of books, book chapters, and journal articles applying or
attempting to develop extensions to these methods are appearing at an incredible
rate. A major reason for their appeal is that these methods allow researchers to
examine models of complex multivariate relationships among all types of variables
(observed, weighted component, or latent) whereby the magnitude of both direct and
indirect effects can be evaluated. Another reason is due to the availability of easy
to use computer programs that often require very little technical knowledge about
the techniques. For example, programs such as AMOS [4], EQS, [5], LISREL, [6],
LVPLS, [7], Mplus, [8], Mx, [9], PLS-Graph, [10, 11], PLS-GUI, [12, 13], RAMONA,
[14], SAS PROC CALIS, [15], SEPATH, [16], Smart-PLS, [17], VisualPLS, [18, 19],
and XLStat PLSPM, [20], are all broadly available for the analyses of models. Using
these programs a variety of complex models can be examined and include confirma-
tory factor analysis, multiple regression, path analysis, models for time-dependent
data, recursive and non-recursive models for cross-sectional, longitudinal data and
multilevel data, covariance structure analysis, and latent class or mixture analysis to
name a few. A frequent assumption made when using these models is that the re-
lationships among the considered variables are linear (although modeling nonlinear
relationships is also becoming increasingly popularity, for details see, [21]).

Unfortunately, once advanced modeling methods become widely available in
easy to use software packages, they also tend to be quickly abused. Although these
methods are based on a number of very specific assumptions and much has been
written about adhering to the assumptions underpinning these techniques, many
misconceptions are prevalent among users and sometimes even appear in premier
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scholarly journals. Applied researchers conducting analyses based on these mod-
eling methods generally proceed in three stages: (i) a theoretical model is hypoth-
esized, (ii) the overall fit of data to the model is determined, and (iii) the specific
parameters of the proposed model are evaluated. A variety of problems might be
encountered at each of these stages, especially if assumptions are not kept in mind
and examined. Indeed as indicated by Marcoulides et al. [3], applied researchers of-
ten do not pay sufficient attention to the stochastic assumptions underlying particular
statistical models. This lack of attention to espoused statistical theory can also divert
focus from precise statistical statements, analyses, and applications, by purporting
to do what cannot be legitimately done with the particular recommended approach
and even encouraging others to engage in similar activities. An example that imme-
diately comes to mind is the investigation that attempted to make comparisons be-
tween modeling methods provided in Goodhue, Lewis, and Thompson (GLT, [22]).
In this investigation, the authors ignored basic issues that most statisticians would
consider essential preliminaries to any attempt to apply these methods in practice.
So does this suggest that applied investigators (and for that matter, those acting as
reviewers, since this manuscript made it through a full review cycle) do not pay
much attention to the fundamental assumptions behind the modeling approaches? Is
it because they find it difficult to follow the original sources or have misunderstood
the writings of the original developers leading to attempts to legitimize bad prac-
tices simply because they lack a deep understanding of the mathematical details?
In either case, when Marcoulides et al. [3] objected to the inappropriateness of the
GLT comparisons, describing them as attempts to compare apples with oranges, the
associate editor handling the original manuscript submission stated that “simply
pointing out the flaws in GLT is not an effective critique without the inclusion of
a direction towards the solution (January 30, 2012, AE Report).” It seems that this
associate editor and the overseeing senior editor most likely had not understood the
mathematical details of the methodology. Furthermore, they did not realize that in
this situation no exact solution was possible and only an approximation was possible
(for approximation details see [23]).

The purpose of this chapter, therefore, is to discuss a variety of methodological
misunderstandings that warrant careful consideration before applying these meth-
ods indiscriminately and obtaining inappropriate interpretations. Naturally many of
these issues have been addressed before, in one form or another, either by us or by
a number of other researchers. Thus, although in general this paper may be viewed
as containing nothing that has not been said before, our approach to the topics is in-
tended to be more informative and didactic. For additional details and more abstruse
discussion, we refer readers to the original sources and other essential outlets.

The issues to be addressed here are: (i) modeling perspectives for conducting
analyses, (ii) equivalent models, (iii) sample size, (iv) identification issues, (v)
myths about coefficient α , (vi) the use of correlation and covariance matrices, and,
finally, (vii) comparisons among PLS and related methods. Extensive listing to re-
sources that are readily available in the literature outlining all the issues in detail
will be avoided including how one can legitimately use these methods. Also bar-
ring inclusion of statements such as “do not try this at home” or “use at your own
risk” on all commercially available software programs, in what follows we attempt
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to summarize main concerns and provide guidelines towards using PLS and related
methods. While many of our comments will occasionally be quite critical and may
even come across as inappropriate and derogatory, but, as indicated by Cudeck [24],
we believe that “it is good for one’s character, not bad for it, to acknowledge past
errors and clearly be capable of learning (p. 317).” Steiger [25] compared entry
into the practice of using these modeling methods as akin to trying to merge onto a
busy superhighway filled with large trucks and buses driving fast in reverse. Without
doubt, the knowledge base required for understanding such analyses is continually
expanding, but it is essential if one is to avoid professional embarrassment.

2 Overview of Modeling Perspectives for Conducting Analyses

The fitting and testing of any theoretical model can be considered from three general
modeling perspectives or approaches [26]. The first is the so-called strictly confir-
matory approach in which a single initially proposed theoretical model is tested
against obtained empirical data and is either accepted or rejected. The second situa-
tion is one in which a finite number of competing or alternative theoretical models
are considered. All proposed models are assessed and the best is selected based
upon which model fits the observed data best using any number of currently avail-
able fit criteria. The third situation is the so-called model generating approach in
which an initially proposed theoretical model is repeatedly modified until some ac-
ceptable level of fit is obtained. Of course, we strongly believe that the decision
regarding which approach to follow should generally be based on the initial theory.
A researcher who is firmly rooted in his or her theory will elect a different approach
than one who is quite tentative about the various relationships being modeled or one
who acknowledges that such information is what actually needs to be explored and
determined. Nevertheless, once a researcher has determined that an initially pro-
posed model is to be abandoned, the modeling approach is no longer confirmatory.
Under such circumstance, the modeling approach has clearly entered an exploratory
mode in which revisions to the model occur, either by simply adding and/or remov-
ing parameters in the model or even completely changing or modifying the initially
proposed model both in terms of latent variables, observed variables, and/or their
path connections and correlations.

The notion of changing aspects of a PLS model fits quite well with the original
ideologies of its founder Wold [27] who indicated that “. . . PLS is primarily de-
signed for research contexts that are simultaneously data-rich and theory skeletal
(p. 26), . . . it is an evolutionary process,” one in which “. . . at the outset the arrow
scheme . . . is more or less tentative . . ..” Indeed, Wold [27] saw absolutely nothing
wrong with “. . . getting indications for modifications and improvement, and grad-
ually consolidating the design . . .” until a final model is selected. For example, if
the values of the loadings for a latent variable show high correlations with an ob-
served variable that has not yet been considered for inclusion as one of its indicators,
this might be subsequently deemed worthy of inclusion among its indicators. In a
simple confirmatory factor analytic model Σxx = ΛΦΛ ′+Θ , where Σxx is the co-
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variance/correlation matrix of the observed x variables, Λ the factor loading matrix,
Φ the factor correlation matrix, and Θ is the error matrix, which is commonly set
up by a priori imposing a number of restrictions on Λ and Φ , such an approach
would entail changing (fixing or freeing) other additional aspects of these particular
matrices (for further details on model restrictions in factor analysis, see [28]).

When considering competing theoretical models, the number of possibilities
to compare are feasible for small sets of variables. For example, with only two
observed variables, there are only four possible models to examine. For 3 variables,
there are now 64 total possible models to examine. However, with more variables
in play, the number of possible model combinations can become prohibitively large.
For example, even with just 6 observed variables there are 1,073,741,824 possi-
ble model combinations to examine. One way to think about the total number of
models among P investigated variables is to consider the number of possible ways
each pair can be connected, to the power of the number of pairs of variables and
is determined by 4[P(P−1)/2] [29]. Nonetheless, when examining all possible models
becomes impractical, various heuristic optimization or automated search algorithms
can be used [30]. Although heuristic search algorithms are specifically designed
to determine the best possible model based upon some objective function solution,
they do not guarantee that the optimal solution is found—though their performance
using empirical testing or worst cases analysis indicates that in many situations they
seem to be the only way forward to produce concrete results [31]. So as the mod-
els become more complicated, automated procedures can at least make “chaotic
situation(s) somewhat more manageable by narrow(ing) attention to models on a
recommendation list” ([32], p. 266). Heuristic model search procedures have re-
cently made their way into the general modeling literature. Examples of such nu-
merical heuristic model search procedures include: ant colony optimization ([33–
36]), genetic algorithms [37], ruin-and-recreate [38], simulated annealing [39], and
Tabu search [30, 40]—and over the years a great variety of modifications have been
proposed to these procedures (e.g., [41, 42]). As indicated, all of these methods
focus on the evaluation of an objective function, which is usually based upon some
aspect of model fit (e.g., the Lagrange multiplier or the Stone-Geisser Criterion; for
additional details see [43]).

Model searches and modifications are extremely difficult especially whenever
the number of possible variables and potential models are high. Thus, automated
algorithms have the potential to be quite helpful for examining models, particularly
where all available information has been included in a specified model and when
this information is not sufficient to obtain an acceptable model fit. Nevertheless—
despite the fact that such searches can usually determine the best models according
to a given fit criteria—all final generated models must be cross-validated with new
data before any real validity to the final models can be claimed. This is quite impor-
tant as specification searches are completely “data-driven exploratory model fitting”
and, as such, can capitalize on chance [44]. For example, in cases where equiva-
lent models are encountered (see next section), such searches will only lead one to
a list of feasible models and then it becomes the responsibility of the researcher
to decide which model to accept as the best model. To date, no automated search
can make such a decision for a researcher. As noted by Marcoulides et al. [30], as
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long as researchers keep in mind that the best use of model searches is to narrow
attention to a reduced list (a sort of top-ten list), the algorithms will not be abused in
empirical applications. More research on these algorithms is clearly needed to es-
tablish which one works best with a variety of models. For now, we believe that the
Tabu search is one of the best available automated specification search procedures
to provide valuable assistance in modeling applications. Unfortunately, to date no
commercially available program offers this automated search option, although many
programs do provide researchers with some rudimentary options to conduct specifi-
cation searches and improve model to data fit.

3 Equivalent Models

While equivalent models has also received considerable methodological atten-
tion over the past couple of decades, it does not seem to be well understood or
even considered by applied researchers using modeling techniques (e.g., [45–58]).
Equivalent models are a set of models that yield identical (a) implied covariance,
correlation and other observed variable moment matrices when analyzing the same
data, (b) residuals and fitted moment matrices, and (c) fit function and related
goodness-of-fit indices (e.g., chi-square values and p-values). Distinguishing be-
tween equivalent models cannot be achieved simply by using any currently available
fit indices. Model equivalence can only be realistically managed via substantive
considerations and/or considerations pertaining to design and data collection fea-
tures (apart from the case of multiple-population versions of single-group equiva-
lent models, where statistical distinction becomes possible with appropriate group
constraints, if substantively correct [54]).

Two hypothesized models (denoted simply as M1 and M2), would be consid-
ered equivalent if the model implied covariance or correlation matrices are identical
(which can be written as Σ̂M1 = Σ̂M2 ). Let us consider this notion in the following
equation:

Σ(θ ) = ΛΦΛ ′+Θ = Λ(Iq−B)−1Ψ (Iq−B′)−1Λ ′+Θ (1)

where Σ(θ ) is the model implied matrix (i.e., either Σ̂M1 or Σ̂M2 ), Λ the factor load-
ing matrix, Λ ′ its transpose, Φ the factor correlation matrix, Θ is the error matrix,
B is the matrix of structural regression coefficients relating the latent variables be-
tween themselves, Ψ is the covariance matrix of the structural regression residuals,
and Iq is the q× q identity matrix (where q is the number of latent variables in
the model, with the usual assumption the matrix Iq−B is full rank). This equation
implies that different matrices appearing in its right-hand side may lead to iden-
tically reproduced covariance/correlation matrices in its left-hand side. This is be-
cause from the sums and products of the matrices one cannot uniquely deduce the
individual matrices on the right-hand side of the equation.

This statement highlights the fact that model equivalence is not defined by
the data, but rather by an algebraic equivalence between hypothesized model
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parameters. In turn, because of this model equivalence, the values of any considered
statistical tests or goodness-of-fit indices of model fit will always be identical. Thus,
even when a hypothesized model fits well according to the examined fit criteria,
there can still be other equivalent models with identical fit—even if the theoretical
implications or substantive interpretations of those models are radically different. In
fact, as presented by Raykov and Marcoulides [55], there may even potentially be
an infinite series of equivalent models to an initially hypothesized one. Identifying
equivalent models can be a very difficult and time-consuming task. But there is
clearly a compelling reason for undergoing such a difficult activity. Unfortunately,
many researchers conducting various modeling activities do not seem to realize that
alternative models might exist and that these others need to be considered.

A number of researchers have proposed a taxonomy that can be used to distin-
guish among several different types of equivalent models: namely, observationally
equivalent and covariance equivalent (see, e.g., [49, 53, 57, 59] to name but a few).
Two models are considered observationally equivalent only if one model can gen-
erate every probability distribution that the other model can generate. Observational
equivalence is model equivalence in the broadest sense, and can be shown using data
of any type. In contrast, models are considered covariance equivalent if every co-
variance (correlation) matrix generated by one model can be generated by the other.
Thus, observational equivalence encompasses covariance (model) equivalence; that
is, observational equivalence requires the identity of individual data values, whereas
covariance equivalence requires the identity of summary statistics such as covari-
ances and variances. We note that observationally equivalent models are always
going to be covariance equivalent, whereas covariance equivalent models might not
necessarily be observationally equivalent. Additional distinctions made include the
mathematical notions of global and local equivalence, thereby signifying globally
equivalent models and locally equivalent models. For two models to be globally
equivalent, a function must exist that translates every parameter of one model into
the parameters of another model. If only a subset of one model’s parameter set is
translatable into the parameter set of another model, the models are then considered
locally equivalent. Local equivalence does not guarantee that the implied covariance
or correlation matrices of the two models will be the same.

Categorizations of strategies for approaching the problem of equivalent models
that have been considered in the extant literature include: (i) those that occur either
before data collection, and (ii) those after data collection. The strategies consist of
the four rules developed by Stelzl [60] and the more general rule by Lee and Her-
shberger [47], those based on graph theory that translate the model relationships
into statistical relations (see [29, 61, 62]), the rank matrix approach that uses the
rank of the matrix of correlations among the parameters of the proposed model
[63], the data mining type automated heuristic searches [42], the information com-
plexity criterion (ICOMP, [58]) with the one providing the lowest value represent-
ing the least complex of models, those that use computational problems associated
with model misspecification as a way to distinguish among equivalent models (e.g.,
[64]), the comparison of the R2 values among models [6], and the examination of ex-
tended individual case residuals (EICR, [65]). Of course, as expected, each of these
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strategies has their proponents and opponents. Regardless of which approach is
used, we believe that the consideration of equivalent models must become a stan-
dard part of the process of defining, testing, and modifying models. Unfortunately,
and despite nearly decades of reports arguing convincingly for the importance of
model equivalence in the model-fitting enterprise, to date many researchers do not
take the extra effort to even consider the potential presence of equivalent models.
We strongly believe that researchers must take the initiative and effort required to
thoroughly examine the potential presence of equivalent models. We also strongly
believe that replication and cross-validation of models are additional essential activi-
ties when utilizing such advanced modeling techniques. Perhaps the best affirmation
of this ideology was provided by Scherr, who declared that

. . . the glorious endeavor that we know today as science has grown out of the murk of
sorcery, religious ritual, and cooking. But while witches, priests, and chefs were developing
taller hats, scientists worked out a method for determining the validity of their results: they
learned to ask: Are they reproducible ([66], p. ix)?

4 Sample Size Issues

The issue of sample size and model identification are very different and separate
issues. We emphatically declare that even a study using a large fraction from a pop-
ulation of interest (e.g., N = 10,000) may still posit a model for which parame-
ters cannot be determined. This is because the issue of model estimation is closely
tied to the issue of model identification and not sample size. Sample size is tied to
power and stability of estimates whereas model identification is tied to existence
and uniqueness of a solution (see details provided in the next section). This appears
to be an issue that many researchers regrettably confuse as equivalent when it is in
fact not at all comparable.

The recent PLS and related modeling literature is replete with examinations and
discussions (some bad, some good) concerning the performance of PLS analyses
with various sample sizes (e.g., [67–75]). Indeed, and despite popular belief, the ev-
idence is quite clear that PLS like any other statistical technique is in no way immune
to the distributional assumption concerning the need for an adequate sample size.
This goes back to Hui and Wold [72] who determined that PLS estimates improved
and their average absolute error rates diminished as sample sizes increased. Simi-
larly, Chin and Newsted [70] determined that small sample sizes (e.g., N = 20) do
not permit a researcher to detect low valued structural path coefficients (e.g., 0.20)
until much larger sample sizes (i.e., between N = 150 and N = 200) are reached.
Small sample sizes could only be used with higher valued structural path coeffi-
cients (e.g., 0.80), and even then “. . .with reasonably large standard errors . . .” ([70],
p. 333). Similarly, Marcoulides and Saunders [73], Chin and Dibbern [76] and Chin
[77] all noted the deleterious impact of non-normal data on PLS estimates and the
need for markedly large sample sizes. Ultimately, a researcher needs to consider the
distributional characteristics of the data, the potential presence of missing data, the
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psychometric properties of the variables included in the model, and the magnitude
of the relationships considered before definitely deciding on an appropriate sample
size to use.

These results and recommendations corroborate Wold’s earlier writings and the-
orems in which he indicated that PLS estimates

. . . are asymptotically correct in the joint sense of consistency (large number of cases) and
consistency at large (large number of indicators for each latent variable . . . [78], p. 266),

implying in the statistical sense that estimation error decreases as N increases (i.e.,
as N→ ∞, the estimation error tends to 0), or simply that any estimated PLS coeffi-
cients will converge on the parameters of the model as both sample size and number
of indicators in the model become infinite (see also Falk and Miller [79]; McDonald
[80]). This same statistical interpretation and recommendation is provided by Hui
and Wold [72] who indicate that PLS “estimates will in the limit tend to the true
values as the sample size N increases indefinitely, while at the same time the block
sizes increase indefinitely but remain small relative to N (p. 123).”

Lu [81] and Lu, Thomas, and Zumbo [82] have also warned researchers about
the bias that arises from a failure to use large number of indicators for each latent
variable (i.e., consistency at large) and labeled it “finite item bias.” Dijkstra [83]
and Schneeweiss [84] provided some discussion about the magnitude of standard
errors for PLS estimators resulting from not using enough observations (consistency)
and indicators for each latent variable (consistency at large). Schneeweiss [84] also
provided closed form equations that can be used to determine the magnitude of
finite item bias relative to the number of indicators used in a model. Using these
equations, Schneeweiss ([84], p. 310) indicated that item bias is generally small
when many indicators, “each with a sizeable loading and an error which is small
and uncorrelated (or only slightly correlated) with other error variables” are used
to measure each factor in the model. These warnings clearly echo well established
concerns that a determination of the appropriate sample size (which depends on
many factors) is also an essential aspect of the whole modeling process.

Although sample size plays an important role in almost every statistical tech-
nique applied in practice and there is universal agreement among researchers that
the larger the sample the more stable the parameter estimates, there is no agree-
ment as to what constitutes large. This topic has received much attention in the
broad statistical literature, but no easily applicable and clear-cut criteria have been
determined, only some general rules of thumb have been proposed. For example,
some researchers cautiously suggested the general rule of thumb that the sample
size should always be more than 10 times the number of free model parameters
[85, 86].

To complicate matters, due to the partial nature of the PLS algorithm, the to-
tal number of free model parameters should not be the basis for sample size re-
quirements. Being a components based approach, sample size requirements may
differ in terms of obtaining stable component weights, measurement paths, and
structural model paths. Chin [10] suggested that a researcher using the PLS path
weighting scheme should examine the largest of two possibilities: (a) the block
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with the largest number of formative indicators (i.e., the largest so-called mode B
measurement equation) or (b) the dependent variable with the largest number of
independent variables impacting it (i.e., the largest so-called structural equation).
Chin [10] then concluded by saying

If one were to use a regression heuristic of 10 cases per predictor, the sample size require-
ment would be 10 times either (a) or (b), whichever is the greater (p. 311, emphasis added).

Here Chin used the example heuristic rule of 10 in conjunction with the path weight-
ing scheme. But the main focus was on considering how to determine the largest re-
gression analysis during the PLS iterative algorithm for estimating required sample
size for obtaining stable estimates for either (1) weights for PLS components or (2)
model paths (i.e., measurement and structural estimates).

Many researchers seem unaware that the equations for a PLS analysis can change
depending on the choice of the inner weighting scheme and that the weight estimates
for the PLS components are not necessarily affected by the structural model. Chin
[10] noted that

If one is not using a path-weighting scheme for inside approximation, then only the mea-
surement model with formative indicators are considered for the first stage of estimation.
At the extreme, we see that a factor- or centroid-weighting scheme with all reflective (mode
A) measures will involve only a series of simple regressions. Under this condition, it may
be possible to obtain stable estimates for the weights and loadings of each component inde-
pendent of the final estimates for the structural model (p. 311).

Unfortunately, many applied researchers without adequate statistical understand-
ing of the PLS algorithm have unreflectively applied the example rule of 10 that
Chin [10] provided. Beyond identifying the constraining regression equation in a
PLS analysis, Marcoulides et al. [74] also noted that it seems there is a “reification
of the 10 case per indicator rule of thumb (p. 174)” by most PLS researchers ignoring
Chin and Newsted’s [70] statement that

for a more accurate assessment, you would specify the effect size for each regression anal-
ysis and look up the power tables provided by Cohen ’[87] or Green’s ’[88] ‘approximation
to these tables’ (p. 327).

Clearly, many other researchers (e.g., [3, 70, 73, 74, 89–93]) have indicated that no
rule of thumb can be applied indiscriminately to all situations. This is because the
appropriate size of a sample depends on the many other factors noted earlier. When
these issues are carefully considered, samples of varying magnitude may be needed
to obtain reasonable parameter estimates.

In spite of these cautiously proposed rules of thumb available in the PLS liter-
ature, there continue to be sweeping claims made by some researchers that PLS

modeling can be or should be used (and often, instead of the covariance-based ap-
proach) because it makes no sample size assumptions or because “. . . sample size is
less important in the overall model . . . ([79], p. 93).” Unfortunately, some of these
studies even appear in top-tiered journals and frequently report results based on
ridiculously low sample sizes, despite the overall inferential intentions of the stud-
ies and the actually magnitude of the parent populations of interest. To make things
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worse, they also try to legitimize these actions by making references to the origi-
nal developers of the PLS approach. Even a cursory preview of articles using PLS

over the past decade reveal a plethora of problematic comments concerning sam-
ple size. Recently Ringle, Sarstedt, and Straub [94] documented a sizable number
of articles published in MISQ (one of the top-tiered information systems journals)
that reported using PLS due to small sample size. Included in some of those arti-
cles, were comments such as: (i) “the PLS approach does not impose sample size
restrictions . . . for the underlying data . . . ([95], p. 237),” (ii) “. . . PLS, a component
based approach that is suitable with smaller data sets . . . ([96], p. 685),” and (iii)
“. . . PLS . . . provides the ability to model latent constructs even under conditions of
non-normality and small- to medium-size samples . . . ([97], p. 49).” To be fair to
these authors, similar troubling comments concerning sample size in PLS modeling
abound in almost every other substantive area we examined, consequently the issue
is not unique to the information systems field.

All three of the above mentioned articles reported on results from studies in
which they had examined and fulfilled the general 10 cases per indicator rule of
thumb mentioned above. Specifically, in the Bhattacherjee and Premkumar’s study
[95], the largest number of indicators per construct in the confirmatory factor anal-
ysis (CFA) conducted was 4 and the authors reported using samples sizes between
54 and 77 (depending on the specific construct examined, see p. 237). The Bassel-
lier and Benbasat’s study [96] also conducted a CFA using 109 observations and
3–4 item scales. Finally, the Subramani’s study [97] used 131 observations in a CFA

with 3–4 item scales and the largest number of paths to any construct was 6. Thus,
all three above mentioned studies followed the general rule of thumb guidelines
regarding sample size.

Nevertheless, as discussed earlier, the generic rule of thumb of 10 cases per indi-
cator does not always ensure accurate and sufficiently stable estimates. So is it the
case that many PLS users simply ignore essential preliminaries with regards to sam-
ple issues when using these methods in practice? Why is it that many do not seem
to carefully examine model parameters along with indexes of their stability across
repeated sampling from the studied population? These indexes—the parameter stan-
dard errors—also play an instrumental role in constructing confidence intervals for
particular population parameters of interest (e.g., [98–101]). Is it not obvious to
them that models estimated using questionable sample sizes with extremely unsta-
ble estimates and wielding huge standards errors and confidence intervals should be
sufficient evidence for an investigator to question the generalizability of results and
validity of conclusions drawn? Questionable sample sizes can also cause standard
errors to be either overestimated or underestimated. Overestimated standard errors
can also result in significant effects being missed, while underestimated standard
errors may result in overstating the importance of effects ([73, 93]).

In order to determine the precision of estimation and find standard errors, two
approaches can be considered: (a) using analytic approaches (such as the delta or
Taylor series expansion method, see, e.g., [98, 101, 102]) or (b) using computer-
intensive re-sampling methods (see, e.g., [10, 27]). Unfortunately, finding formu-
las for standard errors of PLS estimates using the delta or Taylor series expansion
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method is not a trivial task [83], but recent work [98, 101, 102] has proved promis-
ing. As a consequence, Monte Carlo simulation re-sampling methods continue to
dominate the field. The principle behind a Monte Carlo simulation is that the be-
havior of a parameter estimate in random samples can be assessed by the empirical
process of drawing many random samples and observing this behavior.

There are, actually, two kinds of Monte Carlo re-sampling strategies that can
be used to examine parameter estimates and related sample size issues. The first
strategy can be considered a “reactive” Monte Carlo analysis (such as the popular
Jackknife or Bootstrap approaches [10, 27, 73, 98]) in which the performance of
an estimator of interest is judged by studying its parameter and standard error bias
relative to repeated random samples drawn with replacement from the original ob-
served sample data. This type of Monte Carlo analysis is currently quite popular
(particularly the Bootstrap approach), despite the fact that it may often give “an un-
duly optimistic impression of accuracy or stability” of the estimates ([83], p. 86) and
there are no generally applicable results as yet of how good the underlying approx-
imation of sampling by pertinent re-sampling distributions is within the framework
of latent variable modeling [102].

The second, a less commonly known strategy, can be considered a “proactive”
Monte Carlo simulation analysis [25, 73, 103, 104]. In a proactive Monte Carlo anal-
ysis, data are generated from a population with hypothesized parameter values and
repeated random samples are drawn to provide parameter estimates and standard er-
rors. The approach can also be used in a reactive manner to judge obtained estimates
of parameter values and determine the magnitude of standard errors based upon the
sample size actually used in a study. Thus, a proactive Monte Carlo analysis (some-
times also referred to as a power analysis) can be used to both examine parameter
estimate precision and the necessary sample size needed to ensure the precision of
parameter estimates [73, 93].1 To date, only a few IS articles have conducted Monte
Carlo based PLS power analyses (e.g., [105, 106]).

It is surprising to note that some researchers believe that such power analyses are
not useful after a study has been completed. For example, Walden [107] proclaimed
that “. . . no one should ever ask for an after the fact power analysis on a sample that
shows results.” He believes this because a

power analysis asks . . .how big does a sample need to be to detect an effect of a certain
size with some probability . . .. This question does not make sense after the sample has been
collected and the null hypothesis rejected, for several reasons . . . there is no probability to
be evaluated . . . if an effect is observed, the sample is clearly large enough to observe an
effect . . . if you detected an effect, you had the power you needed. (March 5, 2012, AIS
World).

Walden [107] seems to have forgotten that researchers always conduct statisti-
cal hypothesis testing under conditions of uncertainty. In other words, researchers

1 These generation of Monte Carlo data can easily be done using the statistical analysis program
Mplus [8]. Mplus has a fairly easy-to-use interface and offers researchers a flexible tool to analyze
data using all kinds of model choices. Detailed illustrations for using the Mplus Monte Carlo sim-
ulation options can also be found in [93], in the Mplus User’s Guide [8], and at the product Web
site www.statmodel.com

www.statmodel.com
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makes a decision about the “true state of affairs” in a studied population, based
on information only from part of it (the sample) which typically is a fairly small
fraction of the population of interest. Because one functions in this situation of un-
certainty, the decision may be incorrect. This is the reason one may commit one of
two types of errors—a Type I or a Type II error (one cannot commit both types of
errors as they are mutually exclusive possibilities [108]). Hence, even when there
may appear to be overwhelming evidence supporting a null hypothesis, as long as
the sample is not identical to the population one can never claim to have definitively
proved the validity of the null hypothesis. Such a scenario can only occur when the
entire population of interest is exhaustively studied. Any time sample data are used
there is no guarantee that a null hypothesis that is rejected based on the observed
data, is actually true in the population. Thus, one always runs the risk of committing
an error. By at least determining the magnitude of the power of a test of the null
hypothesis [i.e., determining (1−β ), which is the complement to the probability of
making a Type II error] one can gain some probabilistic insight into any decision
about the true state of affairs.

Looking at a number of simple power analyses in studies that employed PLS

modeling techniques, one can quickly deduce the importance of power analyses and
the fallacy of Walden’s [107] argument. To illustrate this point, let us first consider a
confirmatory factor analysis (CFA) model in which two correlated factors (φ21), each
of which has three continuous factor indicators and the following factor loading Λ =
[λ11,λ21,λ31,λ42,λ52,λ62] and error variance Θ = [θ11,θ22,θ33,θ44,θ55,θ66] matrix
structures. Assume that the data are generated with varying values for the factor
inter-correlations (φ21 between 0.1 and 0.9), each factor loading (λ between 0.4 and
0.9), for the error variances (θ between 0.19 and 0.84) and, consequently, for the
indicator reliabilities (between 0.16 and 0.81) and examined with both normal and
non-normal distributions. The non-normal data are generated under conditions of
moderate non-normality (i.e., skewness set to range between 1 and 1.5, and kurtosis
set to range between 1 and 1.5). For ease of presentation, no missing data patterns
are considered. To ensure stability of results, the number of sample replications is
set at 5,000. To simplify matters further, we focus only on the factor correlation
parameter (φ21), although any other model parameter could be similarly examined
(for additional details see [73]).

Table 1 presents the results of a Monte Carlo simulation based on a pre-selected
N = 100 sample size. The boldfaced column values correspond to the various factor
loadings considered (i.e., the values of λ ), while the boldfaced row values corre-
spond to the considered factor inter-correlations (i.e., the values of φ21). The entries
provided in Table 1 correspond to the computed value of the power of the study to
reject the hypothesis that the factor correlation in the population is zero (i.e., the
probability of rejecting the null hypothesis when it is actually false). As can be seen
by examining the entries provided in Table 1, power remains relatively high when in-
dicators with sizeable factor loadings (and thereby more reliable indicators) are used
to measure factors. For example, a power value of 0.97 is achieved when indicators
with factor loadings equal to 0.90 are used to examine a 0.50 valued correlation
between the two factors. Even so, power estimates deteriorate when examining low
valued factor correlations, especially when using poor quality indicators. For exam-
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Table 1: Power values determined for normally distributed data with no missing
values (N = 100)

λ
φ21 0.9 0.8 0.7 0.6 0.5 0.4
0.1 0.13 0.12 0.13 0.13 0.10 0.06
0.2 0.46 0.31 0.26 0.24 0.18 0.10
0.3 0.85 0.82 0.71 0.48 0.36 0.21
0.4 0.97 0.96 0.90 0.81 0.57 0.27
0.5 0.97 0.96 0.96 0.92 0.77 0.41
0.6 1.00 1.00 1.00 0.96 0.91 0.53
0.7 1.00 1.00 1.00 0.99 0.93 0.66
0.8 1.00 1.00 1.00 1.00 0.97 0.77
0.9 1.00 1.00 1.00 1.00 1.00 0.82

ple, a power value of only 0.10 is achieved when indicators with factor loadings
equal to 0.50 are used to examine a 0.10 valued factor inter-correlation.

Table 2: Power values determined for normally distributed data with no missing
values (N = 50)

λ
φ21 0.9 0.8 0.7 0.6 0.5 0.4
0.1 0.11 0.11 0.12 0.13 0.15 0.09
0.2 0.29 0.27 0.24 0.22 0.21 0.13
0.3 0.59 0.52 0.45 0.37 0.30 0.22
0.4 0.87 0.78 0.70 0.62 0.46 0.24
0.5 0.97 0.93 0.87 0.72 0.54 0.30
0.6 1.00 0.99 0.94 0.88 0.70 0.46
0.7 1.00 1.00 1.00 0.93 0.74 0.50
0.8 1.00 1.00 1.00 0.97 0.83 0.57
0.9 1.00 1.00 1.00 1.00 0.87 0.58

Table 2 presents the results in which a much smaller pre-selected N = 50 sample
size is used. As can be seen from these results, power again tends to remain relatively
high when psychometrically sound indicators measure factors, particularly when
examining very high valued factor correlations. Tables 3 and 4 present the results of
Monte Carlo simulations for the same two sample sizes (N = 50 and N = 100) but
instead under conditions of non-normality. Unfortunately, when the power values
are examined under such conditions of non-normality, their deterioration is evident
and quite disconcerting. In fact, none of the values provided in Tables 3 and 4 are
above 0.40, indicating that using these sample sizes a researcher would just not be
able to reject false null hypotheses concerning the factor inter-correlation.

So what samples sizes would be needed to achieve a sufficient level of power, say
equal to 0.80 (considered by most researchers as acceptable power)? The results of
such a Monte Carlo analysis under conditions of normality and non-normality are
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Table 3: Power values determined for non-normally distributed data with no missing
values (N = 50)

λ
φ21 0.9 0.8 0.7 0.6 0.5 0.4
0.1 0.11 0.09 0.11 0.12 0.09 0.04
0.2 0.12 0.12 0.11 0.12 0.10 0.05
0.3 0.14 0.14 0.13 0.15 0.11 0.06
0.4 0.17 0.15 0.15 0.16 0.12 0.08
0.5 0.19 0.19 0.19 0.19 0.15 0.08
0.6 0.20 0.22 0.21 0.22 0.16 0.11
0.7 0.23 0.23 0.23 0.24 0.20 0.12
0.8 0.25 0.26 0.26 0.27 0.23 0.12
0.9 0.30 0.31 0.30 0.32 0.26 0.18

Table 4: Power values determined for non-normally distributed data with no missing
values (N = 100)

λ
φ21 0.9 0.8 0.7 0.6 0.5 0.4
0.1 0.08 0.07 0.08 0.11 0.10 0.04
0.2 0.09 0.07 0.09 0.11 0.11 0.06
0.3 0.14 0.11 0.11 0.12 0.12 0.07
0.4 0.17 0.15 0.12 0.12 0.12 0.09
0.5 0.20 0.21 0.16 0.17 0.15 0.10
0.6 0.25 0.25 0.24 0.19 0.16 0.12
0.7 0.28 0.28 0.26 0.27 0.21 0.14
0.8 0.33 0.34 0.33 0.29 0.24 0.18
0.9 0.40 0.38 0.36 0.36 0.27 0.21

provided in Tables 5 and 6. As can be seen by examining the entries in Table 5, rela-
tively small sample sizes can often be used when psychometrically sound indicators
are available to examine high valued factor inter-correlations. However, when trying
to examine low valued factor inter-correlations using poor quality indicators, much
larger sample sizes are needed. It is important to note that the results presented in
Table 5 corroborate those presented by Hui and Wold [72], Chin and Newsted [70],
and Schneeweiss [84] that small sample sizes do not permit a researcher to detect
low valued model coefficients until much larger sample sizes are reached. How-
ever, the problem can be much more disconcerting than these researchers originally
reported, as can be seen by examining the entries in Table 6. When moderately non-
normal data are considered, the sample sizes needed sometimes become astronom-
ical, despite the inclusion of highly reliable indicators in the model. These results
are evidence that determining the appropriate sample size even for a simplistic CFA

depends on many model characteristics, including the psychometric properties of
the indicators, the strength of the relationships among the factors, and the distribu-
tional characteristics of the data. It is also important to note that for only a limited
number of normally distributed data conditions would the PLS rule of thumb of 10
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cases per indicator really suffice in these example models considered. As indicated
previously, a researcher must consider the distributional characteristics of the data,
potential missing data, the psychometric properties of the variables examined, and
the magnitude of the relationships considered before deciding on an appropriate
sample size to use or to ensure that a sufficient sample size is actually available to
study the phenomena of interest.

Table 5: Sample sizes needed to achieve power= 0.80 with normally distributed
data and no missing values

λ
φ21 0.9 0.8 0.7 0.6 0.5 0.4
0.1 916 1,053 1,261 1,806 2,588 4,927
0.2 256 292 371 457 764 1,282
0.3 96 99 147 223 317 672
0.4 46 57 71 98 186 343
0.5 25 34 43 66 111 220
0.6 16 20 23 44 78 175
0.7 15 15 17 33 61 134
0.8 15 15 17 25 46 109
0.9 15 15 17 25 42 99

Table 6: Sample sizes needed to achieve power = 0.80 with non-normally distributed
data and no missing values

λ
φ21 0.9 0.8 0.7
0.1 15,646 24,574 31,381
0.2 4,922 5,766 6,251
0.3 2,357 2,623 2,817
0.4 1,331 1,536 1,715
0.5 931 1,018 1,203
0.6 653 707 864
0.7 467 545 639
0.8 386 433 486
0.9 345 351 407

It is also quite useful to examine in detail the previously mentioned studies and
determine the extent to which they exhibited a sufficient level of power to support
the results and validity of conclusions drawn. We note that all of these studies in-
dicated they had examined and fulfilled the 10 cases per indicator rule of thumb.
Table 7 presents a power analysis of the CFA model from the study by Bhattacherjee
and Premkumar [95]. Two values are provided in each cell of Table 7, the inter-
construct correlation reported in the published study (for full details see [95], Table
2, p. 239), and the determined level of power for each examined inter-correlation.
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Because no specific details were provided in the published study about the distri-
butional characteristics of the data or any apparent missing data patterns, the power
analyses were conducted by assuming normally distributed data with no missing
data patterns. The factor loadings reported for the scaled items in the study were all
in the 0.80–0.96 range and the sample sizes were between 54 and 77 observations,
depending on the construct examined (see Table 1, p. 238). As can be seen by exam-
ining the entries in Table 7, and assuming normally distributed data with no missing
data patterns, power would be considered quite high for all the inter-construct cor-
relations examined in the Bhattacherjee and Premkumar’s study [95].

Table 8 presents a power analysis of the CFA from the study by Bassellier
and Benbasat [96]. Once again, two values are provided in Table 8. The inter-
correlations among the constructs reported in the published study (see [96], Table

Table 7: CFA inter-construct correlations and power values for Bhattacherjee and
Premkumar [95] (N = 54)

CBT study (time t2− t3) U2 A2 D3 S3 U3 A3
Attitude (A2) 0.74a(0.94)b

Disconfirmation (D3) 0.45 (1.00) 0.44 (0.94)
Satisfaction (S3) 0.59 (1.00) 0.58 (0.100)0.46 (1.00)
Usefulness (U3) 0.65 (1.00) 0.61 (1.00) 0.60 (1.00)0.64 (1.00)
Attitude (A3) 0.63 (1.00) 0.69 (1.00) 0.54 (0.99)0.80 (1.00)0.71 (1.00)
Intention (I3) 0.63 (1.00) 0.58 (1.00) 0.52 (0.97)0.53 (0.98)0.79 (1.00)0.61 (1.00)
aInter-construct correlation
bPower

Table 8: CFA inter-construct correlations and power values for Bassellier and Ben-
basat [96] (N = 109)

CBT study 1 2 3 4 5 6 7
1. Intentions for partnerships

2. Organizational overview
0.406a

(0.97)b

3. Organizational unit
0.352 0.809
(0.89) (1.00)

4. Organizational responsibility
0.504 0.601 0.676
(1.00) (1.00) (1.00)

5. IT-business integration
0.516 0.628 0.589 0.595
(1.00) (1.00) (1.00) (1.00)

6. Knowledge networking
0.283 0.453 0.405 0.308 0.341
(0.73) (0.99) (0.96) (0.81) (0.87)

7. Interpersonal communication skills
0.381 0.485 0.386 0.345 0.478 0.474
(0.94) (0.99) (0.95) (0.88) (0.98) (0.98)

8. Leadership skills
0.427 0.589 0.600 0.516 0.652 0.517 0.582
(0.97) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00)

aInter-construct correlation
bPower
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6, p. 688), and the appropriately determined level of power for each examined inter-
correlation. Because this study also did not provide any specific details about the
distributional characteristics of the data or any apparent missing data patterns, the
analyses were conducted under the assumption of normality and no missing data
patterns. The factor loadings reported for scaled items in the study were all in the
0.71–0.89 range and the sample size was 109 observations (see Table 5, p. 687).
As can be seen from the entries in Table 8, and assuming normally distributed data
with no missing data patterns, power would also be considered quite high for almost
all the inter-construct correlations examined in the Bassellier and Benbasat’s study
[96]. The only power value that is lower (0.73) than the commonly accepted cutoff
point of 0.80 is for the correlation between the constructs of “knowledge networking
(#6)” and “intentions for partnerships (#1).”

Finally, Table 9 presents a power analysis of the CFA from the study by Subra-
mani [97]. The same two values are provided in the table; the inter-construct corre-
lations reported in the published study (see [97]; Table 2, p. 61) and the determined
level of power for each examined correlation. As with the previously examined stud-
ies, this study also did not provide any specific details about the distributional char-
acteristics of the data or missing data patterns. As such, the analyses were again
conducted under the assumption of normality and no missing data patterns. The fac-
tor loadings were not specifically reported for scaled items in the study, but were
apparently “uniformly high (p. 59)” and between 0.71 to “above 0.80 (p. 59),” using
a sample with 131 observations. As can be seen by examining the entries in Ta-
ble 9, and assuming normally distributed data with no missing data patterns, power
would be considered quite low (and in some cases well below the commonly ac-
cepted cutoff point of 0.80), even for many of the reported statistically significant
inter-construct relationships. For example, although the relationship between the
Operational Benefits (#5) and IT USE for Exploitation (#1) was reported as being
statistically significant (0.179, p < 0.05), its power value on the basis of the proac-
tive Monte Carlo simulation analysis is determined to be equal to 0.40 (assuming of
course normally distributed data with no missing values—if in fact, the data were
not normally distributed a much lower power value would be expected). In other
words, the computed value of the power of the study to reject the hypothesis that
the factor inter-correlation in the population is zero was determined to be quite low.
It is particularly important to note that, despite the fact that Subramani’s study [97]
utilized a larger sample size than either of the other two previously examined studies
(which as we saw exhibited sufficiently high levels of power), the low valued fac-
tor correlations examined in Subramani’s study [97] actually deteriorated the power
of the statistical tests conducted. And, although Subramani’s study [97] clearly ful-
filled the frequently used rule of thumb of using 10 cases per indicator, it appears
that the generalizability of some of the results and the validity of the conclusions
drawn from this study may be questionable.

As indicated by Marcoulides and Saunders [73] the selection of an appropriate
sample size that will ensure an adequate level of power clearly depends on many
factors. These include the psychometric properties of the variables considered, the
strength of the relationship among the variables, the complexity and size of the
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model, the amount of missing data, and the distributional characteristics of the vari-
ables. Examining all these issues using a proactive Monte Carlo simulation analy-
sis will at least provide researchers with some insight concerning the stability and
power of the parameter estimates that would be obtained across repeated sampling
from the studied population. Ignoring these issues could lead to important effects
being completely missed in a study or lead to overstating the importance of effects
in a study.

5 Model Identification Issues

The examination of issues related to model identification began in the early part of
the last century with the work of Albert [109, 110], Koopmans and Reiersol [111],
and Ledermann [112]. Identification basically consists of two specific aspects: exis-
tence and uniqueness (e.g., [63, 113, 114]). For example, in the context of a factor
analysis model, existence and uniqueness would imply the following: (1) Existence:
Does a factor decomposition (e.g., Σ = ΛΛ ′ +Ψ ) exist in the population (for a
given number of factors m), where Λ is a p×m factor loading matrix with rank
m, and Ψ is a unique variance diagonal (error) matrix with positive elements? (2)
Uniqueness: Assuming the existence of a factor decomposition, is it the only de-
composition possible? In other words, are there no other matrices (e.g., some other
matrices such as Λ2 and Ψ2 different from Λ and Ψ ) that can give the same matrix
Σ (i.e., Σ =Λ2Λ ′2 +Ψ2, with rank of Λ2 not greater than m)?

Model identification can also be categorized in one of two ways: (1) global iden-
tification, in which all of a model’s parameters are identified, or in contrast, (2) local
identification, in which at least one—but not all—of a model’s parameters is identi-
fied. Globally identified models are locally identified, but locally identified models
may or may not be globally identified. Global identification is a prerequisite for
drawing inferences about an entire model. When a model is not globally identified,
local identification of some of its parameters permits inferential testing in only that
section of the model. Some researchers have referred to this as partial identification
[28]. Kano [115] has suggested that we focus more attention on examining what he
referred to as empirical identification, rather than the more commonly considered
notion of mathematical identification. At least in theory (although somewhat debat-
able in practice) parameters that are not identified do not influence the values of
ones that are identified.

In addition to categorizing models as either globally or locally identified, they can
also be classified as (1) under-identified, (2) just-identified, or (3) over-identified.
Consider for example a model involving four (P = 4) observed variables. Such a
model would be determined as having a correlation or covariance data matrix with
altogether 1

2 P(P+ 1) = 4×5
2 = 10 nonredundant elements. Now let us consider the

case of an under-identified model. Under-identification occurs when not enough rel-
evant data are available to obtain unique parameter estimates. Using the notion of
the degrees of freedom of any hypothesized model as the difference between the
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number of nonredundant elements in the data matrix and the number of parameters
in the model, an under-identified model will have negative degrees of freedom. We
note that when the degrees of freedom of a model are negative, at least one of its
parameters is under-identified. Having positive degrees of freedom with any pro-
posed model is a necessary but not a sufficient condition for identification. That is
because having positive degrees of freedom does not guarantee that every parameter
is identified. There can in fact be situations in which the degrees of freedom for a
model are quite high (the so-called over-identified case) and yet some of its parame-
ters remain under-identified [100]. Conversely, having negative degrees of freedom
is a sufficient but not a necessary criterion for showing that a model is globally
under-identified.

Two additional and frequently interchangeably used concepts are those of a “sat-
urated model” and of a “just identified” model. A just identified model can be de-
fined as an identified model that has zero degree of freedom, while a saturated model
can be defined as a model that has zero degree of freedom [116, 117]. Nevertheless,
as noted by Raykov et al. [117], the distinction between these two models is quite
important since using them interchangeably can lead to consequential theoretical
and empirical confusion, with potentially misleading substantive conclusions. Be-
cause a saturated model need not be (just) identified, the two concepts must be kept
separate. Raykov et al. [117] proposed that (a) the notion of “the saturated model”
be reserved for a particular saturated model (the one with unconstrained variable
variances and covariances), and (b) that the reference “a saturated model” be used
when the pertinent statement would be correct for any saturated model for that set
of observed variables.

If theory testing is the main objective, the most desirable identification status of
a model is over-identification, where the number of available data elements is more
than those needed to obtain a unique solution. Although as indicated above, having
positive degrees of freedom does not guarantee that every parameter in the model is
identified. An over-identified model thereby implies that, for at least one parameter,
there is more than one equation the estimate of a parameter must satisfy; only under
these circumstances—the presence of multiple solutions—are models provided with
the opportunity to be rejected by the data.

Although identification issues have major implications with respect to model fit-
ting, they are frequently ignored due to their challenging technical intricacies [28].
To simplify matters, some researchers often make a specific assumption about exis-
tence and focus mainly on uniqueness aspects. For example, existence in factor anal-
ysis implies that factor decomposition exists for a given number of factors, whereas
uniqueness assumes it is the only decomposition possible—in other words, it is com-
monly assumed that a factor decomposition does exist in the population of interest.
The topic of model uniqueness has generally followed two early lines of research:
one originating in Albert [109, 110] and Anderson and Rubin [118] and the other
based on the work of Ledermann [112]—for a detailed overview see [28] and the
references therein.



52 G.A. Marcoulides and W.W. Chin

Anderson and Rubin [118] specifically proposed the following theorem (the so-
called Theorem 5.1) in factor analysis for a sufficient condition of uniqueness:

Theorem 5.1. If any single row of a factor loading matrix Λ is deleted, there still
remain two disjoint (i.e., non-overlapping) submatrices of rank m. Then the FA de-
composition is unique (for a detailed proof of this theorem see [119]).

To illustrate, consider for example the following matrix:

Σ =

⎛

⎜
⎜
⎜
⎜
⎝

1 0.340 0.310 0.100 0.095
0.340 1 0.285 0.095 0.090
0.310 0.285 1 0.090 0.085
0.100 0.095 0.090 1 0.150
0.095 0.090 0.085 0.150 1

⎞

⎟
⎟
⎟
⎟
⎠

and a FA decomposition leading to a factor loading (Λ ) matrix with rank m = 2:

Λ =

⎛

⎜
⎜
⎜
⎜
⎝

0.60 0.10
0.55 0.10
0.50 0.10
0.10 0.40
0.10 0.35

⎞

⎟
⎟
⎟
⎟
⎠

and a unique variance (Ψ ) matrix equal to:

Ψ =

⎛

⎜
⎜
⎜⎜
⎝

0.63 0 0 0 0
0 0.69 0 0 0
0 0 0.74 0 0
0 0 0 0.83 0
0 0 0 0 0.87

⎞

⎟
⎟
⎟⎟
⎠

.

If the first row in the factor loading matrix Λ were deleted to provide

Λ =

⎛

⎜
⎜
⎜⎜
⎝

0.55 0.10
0.50 0.10
0.10 0.40
0.10 0.35

⎞

⎟
⎟
⎟⎟
⎠

,

then the two possible disjoint submatrices
⎛

⎜⎜
⎜
⎜
⎝

0.55 0.10
0.50 0.10

⎞

⎟⎟
⎟
⎟
⎠

and

⎛

⎜⎜
⎜
⎜
⎝0.10 0.40

0.10 0.35

⎞

⎟⎟
⎟
⎟
⎠

would provide nonzero determinants, thereby signifying that there are two disjoint
submatrices whose rank is m = 2 (we note that similar rank results would be ob-
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tained for the remaining possible submatrices; for complete details and a step by step
analysis for conducting such examination, including a SAS PROC IML subroutine,
see Table 1 in [28]). Consequently, the factor analysis decomposition Σ =ΛΛ ′+Ψ
is unique. In other words, based upon these results there is no alternative factor
decomposition (such as Σ = Λ2Λ ′2 +Ψ2) of the matrix Σ .

The above Anderson and Rubin [118] theorem essentially requires that the rela-
tionship between the number of observed variables (p) and number of factors (m)
be satisfied as p≥ 2m+1 (i.e., the number of observed variables p has to be greater
than twice the number of factors m [115]). In other words, what Theorem 5.1 implies
is that if the number of factors (m) selected is greater than (p− 1)/2 observed vari-
ables, it will be difficult for the solution to be identified [120]. For example, if four
factors were selected in a study with only eight observed variables, it will be difficult
to get the solution to be identified. A number of other researchers (e.g., [121, 122])
have also provided alternative conditions to those proposed by Anderson and Rubin
[118] and much research continues to date on this topic (e.g.,[114, 120]).

Anderson and Rubin [118] also proposed other important theorems for necessary
conditions of uniqueness, which they called Theorems 5.5–5.7. A particular theorem
that has very important practical implications to the practice of factor analysis and
related models is Theorem 5.6. This theorem states: If any rotated factor loading
matrix (rotated by a nonsingular matrix) has a column with at most two non-zero
elements, then the FA decomposition is not unique (and therefore is not identified).

In other words, if a researcher extracts a factor whose factor loading estimates
are quite small and do not differ significantly from zero except for at most two ele-
ments, then it may be reasonable to suspect that the factor is not uniquely identified.
The example, the population factor loading matrix Λ and its estimate Λ̂ would be
illustrative of such a not uniquely identified third factor (see [115], p. 143):

Λ =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0.57 0.13 0.00
0.57 0.33 0.00
0.21 0.37 0.54
0.75 0.07 0.00
0.73 0.07 0.00
0.29 0.25 0.54
0.19 0.45 0.00
0.18 0.33 0.00
0.10 0.71 0.00
0.31 0.43 0.00
0.02 0.42 0.00
0.03 0.53 0.00

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

Λ̂ =

⎛

⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

0.58 0.13 0.02
0.59 0.33 0.03
0.24 0.35 0.05
0.74 0.61 0.01
0.72 0.07 0.01
0.31 0.23 0.55
0.20 0.45 0.02
0.17 0.33 0.02
0.12 0.71 0.03
0.30 0.40 0.01
0.01 0.43 0.02
0.03 0.45 0.02

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

.

Consequently, a researcher should be very cautious whenever an estimated factor
loading matrix looks anything like the one displayed on the right-hand side above.

Fortunately, most general statistics programs provide options to output the stan-
dard errors for rotated factor loadings and, consequently, a researcher can at least
select to conduct hypothesis tests to determine whether the rotated factor loadings in
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the population significantly differ from zero (although once again the issue of power
and sample size considered in the above section would again come into play). For
simultaneous hypothesis testing, it may be wise to employ Bonferroni adjustments
to control the overall Type I error however, it is a difficult decision because such
smaller overall alpha levels often result in lowering statistical power. Alternatively,
Kano [115] proposed that the Lagrangian multiplier test be used (this test is also
quite commonly provided in some commercially available modeling programs; see,
e.g., EQS [85]) to investigate such cases.

Despite the fact that the issues of model identification have been well docu-
mented, these do not appear to be well known or commonly considered by applied
researchers using modeling methodologies. We strongly believe that researchers
must become cognizant of the potential consequences of ignoring these issues and
at least understand some of the basics involved in accordance to the model being
tested.

6 Myths About the Coefficient α

Coefficient alpha is frequently used in empirical research as an index that informs
about measurement instrument reliability. Most measurement instruments (e.g., in-
ventories, questionnaires, self-reports or tests), are typically developed to provide an
overall assessment (an overall score) of an underlying latent dimension by accumu-
lating information about various aspects of the latent dimension across their compo-
nents (e.g., questions or items). Coefficient alpha is applicable when the components
of a given measurement instrument are dichotomous or polytomous and capitalizes
on the interrelationships among the instrument components (specifically their co-
variance) to provide a reliability estimation index. The estimate is readily available
in most statistical packages and can be easily obtained with them for use in any em-
pirical research setting. Unfortunately, and despite its availability and widespread
use, a number of troubling myths about coefficient alpha appear prevalent among
researchers [123]. For example, many researchers incorrectly use it as an index of
dimensionality, often declaring that a set of items can be judged to be unidimen-
sional when α > 0.70. Coefficient alpha assumes unidimensionality, but it is not a
test of it. As we highlight below, however, such interpretations and reliance on alpha
can be quite problematic and misleading (for complete details, see [54, 123–134]).
We address here two specific myths held about the coefficient and clarify some in-
accuracies and inconsistencies commonly encountered in the literature (for more
details see [123]):

1. Alpha is only an index of internal consistency. In other words, it is an index of
the degree to which a set of instrument components are interrelated (in terms of
inter-item covariance). The higher the magnitude of this covariance, the higher
the value of coefficient alpha. Such evidence, however, does not imply unidimen-
sionality of the set of components of a considered instrument (see also [135], for
an insightful discussion and counter-examples, as well as [124]). The coefficient
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alpha merely assumes unidimensionality, it does not test for it. If a researcher
is interested in assessing unidimensionality, alpha cannot provide such infor-
mation. In order to examine the unidimensionality hypothesis itself, one should
prefer the use of an exploratory or a confirmatory factor analysis. With a con-
firmatory factor analysis one can essentially statistically test this hypothesis and
evaluate the extent to which it may be viewed as supported for a measurement
instrument in a given data set.

2. Alpha is not in general a lower bound of reliability. Alpha is a lower bound of
reliability only under certain specific measurement circumstances. For example,
Raykov and Marcoulides [123] stressed that this property only holds with uncor-
related errors among a set of components (for further details see also [54, 134]).
With correlated errors, the underestimation feature of alpha does not generally
hold. If they are correlated, alpha may or may not be a lower bound of com-
posite reliability, regardless of the number of underlying dimensionality of the
measuring instrument under consideration.

7 The Use of Correlation and Covariance Matrices

Although much literature has addressed the issue of the potential differences that
can occur when analyzing correlation matrices as covariance matrices (and vice
versa), it does not seem to be well understood that applying a covariance structure
to a correlation matrix can produce some combination of incorrect standard errors,
parameter estimates, or test statistics, and may even alter the studied model and
results (see also [24] and references therein). Researchers applying PLS and related
methods often appear to arbitrarily analyze the matrix of choice (or perhaps even
convenience) without realizing that it is possible and probably most likely that incor-
rect conclusions may be drawn because of this choice. Such choices are especially
important when flawed attempts are made to compare the various methods and their
performance under supposedly varying distributional characteristics (see, e.g., [22]
in which PLS was compared to other commonly used modeling techniques—see
detailed discussion in next section).

The message is quite simple. The model must be scale invariant [24]. In other
words, a scale invariant covariance matrix is one that can be transformed into
the associated correlation matrix by rescaling the model parameters by functions
of standards deviations. Simply standardizing the covariance matrix may or may
not affect the analysis, but it really depends on the model being considered. For
example, using both the correlation and covariance matrices computed for a set
of eight variables (n = 72) collected in a clinical setting originally reported in
Jolliffe ([136]; see p. 40 for the observed data matrix), Marcoulides et al. [74]
showed that the weighted composite w1 = 0.2,0.4,0.4,0.4,−0.4,−0.4,−0.2,−0.2
(explaining 35% of the total variation in the variables) would be obtained when
the correlation matrix is used, compared to the obtained weighted composite w2 =
0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0 (explaining 99% of the total variation) when the
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covariance matrix is used. The main reason for this disparity is the considerable
difference in the standard deviations caused by the differences in scale for each of
the eight variables (which are 0.371, 41.253, 1.935, 0.077, 0.071, 4.037, 2.732, and
0.297, respectively). Cudeck [24] also presented three simple factor analytic mod-
els for the observed matrix Σ = Σ(γ) = ΛΦΛ ′+Θ , (where Λ is the factor loading
matrix, Φ the factor correlation matrix, Θ is the error matrix, and γ is the model
defined parameter vector), and showed that, unless the model under examination is
indeed appropriate for scale changes, any rescaling that occurs modifies the model
completely (in the example used two of the models were scale invariant and one
was not). Thus, if a factor analysis model is invariant, it is always possible to obtain
estimates of the parameters. The original model structure will not be modified, only
the elements of the parameter vector γ .

Although an algebraic derivation is the best way to determine whether a model
is scale invariant, unfortunately this is often quite cumbersome and particularly dif-
ficult with complex models. An easy to follow practical approach is to simply fit
the proposed model structure twice: first to the observed covariance matrix and then
again to the observed matrix of correlations. The model structure is likely invari-
ant if at the minima the discrepancy function of each obtained model is equal. We
emphasize that this equality is not in and of itself sufficient evidence [24]. Neverthe-
less, the structure is categorically not invariant if the two are not equal. Assuming
that either a correlation or a covariance matrix may be interchangeably examined
can prove to be tricky.

8 Comparisons Among Modeling Methods

Numerous researchers have attempted studies comparing the efficacy of PLS with
that of other modeling approaches, often without ever addressing the issue of the
legitimacy of these comparisons. For example, if the comparison is between mul-
tiple regression, PLS, or other related modeling technique, then it is trivial. This is
because an analysis of the same data and model based on a single regression equa-
tion using multiple regression, PLS or other modeling approach will always result in
identical estimates. Obtaining such identical estimates is due to the well known fact
that a single regression equation is a just-identified model and fits the data in the ex-
act same way irrespective of the minimized fit function. For instance, Goodhue et al.
[22, 137] attempted such trivial comparisons and then reported on supposed differ-
ences in the methods without ever realizing that their comparisons were wrong (for
complete details see [3]). In contrast, Hwang et al. [138] in their comparison study
carefully stipulated the precise conditions of their analyses and fully acknowledge
the limitations of their comparisons. They openly acknowledged the differences in
the setup of the approaches in terms of model specification and parameter estimation
ahead of any analyses conducted. They subsequently indicated that

. . . this leads to the specification of different sets of model parameters for latent vari-
ables (i.e., factor means and/or variances in covariance structure analysis versus compo-
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nent weights in partial least squares) . . .The algebraic formulations underlying the three
approaches seem to result in substantial difference in the procedures of parameter estima-
tion.

They go on to point out again that the

. . . approaches estimate different sets of model parameters . . .. Thus, in this study we evalu-
ate and report the recovery of the estimates of a common set of parameters . . . (p. 703).

They conclude by acknowledging their inability to provide correctly parameterized
comparisons among the approaches and indicate that

. . .we generated simulated data on the basis of covariance structure analysis . . .we adopted
the procedure because it was rather difficult to arrive at an impartial way of generating
synthetic data for all three approaches . . . (p. 710).

An appropriate approach for correctly parameterized comparisons between PLS

and other methods was recently proposed by Treiblmaier et al. [23]. This approach
begins by distinguishing between models with observed variables (x), composite
variables (F) and latent variables (F), and unambiguously implements an F that
closely approximates an F for comparison purposes. Doing so, however, requires
a two-step approach that splits the determinate part of the composite into two or
more composites and then models them as latent variables. This method can be
readily contrasted with other inappropriate comparisons that simply create substitute
estimates of latent variables (as was done in [22]). As explained by Marcoulides
et al. [3], specifying models in this manner does not eliminate the fact that they are
differentially parameterized models (in other words, an x→ F path is not the same
as a x→ F path). Although substitution of estimates for F is routinely done when
conducting such comparisons, there are well-known and clear consequences (see
complete details provided in [23]), not the least of which that “. . . not all parameters
will be estimated consistently” ([139], p. 37).

The above reasons summarize why Marcoulides et al. [3, 74] emphatically
warned researchers that

. . . the comparison of PLS to other methods cannot and should not be applied indiscrimi-
nately

and referred to any inappropriate evaluations between methods as “comparing ap-
ples with oranges.”

The central issue dictating the legitimacy of such comparisons revolves around
the notion of differentially parameterized models. Ignoring the legitimacy of this
concern can lead to incorrect conclusions or may lead to overstating the importance
of observed results [74]. Goodhue, Lewis, and Thompson to some extent acknowl-
edged this fact when they stated that

We owe you all an apology! We were so certain that we were right in the equivalence of
the methods, but now we see that the issue is more complicated than we thought (You
are probably not surprised, at least by this last phrase!). We were focusing on how the
techniques were used in practice, and didn’t see that how they are used in practice is, in
fact, not equivalent (May 1, 2008, personal communication).
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But, unfortunately, Goodhue et al. [22, 140] somehow ultimately disregarded this
fact and attempted to report on results from incorrect comparisons. It is essential
that researchers ensure that any observed differences encountered between methods
are not merely a function of differentially parameterized models being analyzed.
Ignoring this matter can and has repeatedly lead to the unfortunate incidence of
overstating the importance of the outcomes observed as in the case of Goodhue
et al. [22, 140].
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[78] K.G. Jöreskog, and H. Wold, Systems under indirect observation, Part I & II, North Holland:
Amsterdam, 1982.

[79] R.F. Falk, and N.B. Miller, A primer of soft modeling. Akron, OH: The University of Akron
Press, 1992.

[80] R.P. McDonald, Path analysis with composite variables. Multivariate Behavioral Research,
31, pp. 239–270, 1996.

[81] I.R.R. Lu, Latent variable modeling in business research: A comparison of regression based
on IRT and CTT scores with structural equation models, Doctoral dissertation, Carleton
University, Canada, 2004.

[82] I.R.R. Lu, D.R. Thomas, and B.D. Zumbo, Embedding IRT in structural equation mod-
els: A comparison with regression based on IRT scores. Structural Equation Modeling, 12,
pp. 263–277, 2005.

[83] T. Dijkstra, Some comments on maximum likelihood and partial least squares methods.
Journal of Econometrics, 22, pp. 67–90, 1983.

[84] H. Schneeweiss, Consistency at large in models with latent variables. In K. Haagen, D.J.
Bartholomew, and M. Deistler (Eds.). Statistical modelling and latent variables, Elsevier:
Amsterdam, 1993.

[85] P.M. Bentler, EQS structural equation program manual, Encino, CA: Multivariate Software,
Inc., 1995.



62 G.A. Marcoulides and W.W. Chin

[86] L.-T. Hu, P.M. Bentler, and Y. Kano, Can test statistics in covariance structure analysis be
trusted? Psychological Bulletin, 112, pp. 351–362, 1992.

[87] J. Cohen, Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:
Lawrence Erlbaum, 1988.

[88] S.B. Green. How many subjects does it take to do a regression analysis? Multivariate Be-
havioral Research, 26, pp. 499–510, 1991.

[89] A. Boomsma, The robustness of LISREL against small sample sizes in factor analysis
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Correlated Component Regression: Re-thinking
Regression in the Presence of Near Collinearity

Jay Magidson

Abstract We introduce a new regression method—called Correlated Component
Regression (CCR)—which provides reliable predictions even with near multi-
collinear data. Near multicollinearity occurs when a large number of correlated
predictors and relatively small sample size exists as well as situations involving
a relatively small number of correlated predictors. Different variants of CCR are
tailored to different types of regression (e.g. linear, logistic, Cox regression). We
also present a step-down variable selection algorithm for eliminating irrelevant pre-
dictors. Unlike PLS-R and penalized regression approaches, CCR is scale invariant.
CCR is illustrated in several examples involving real data and its performance is
compared with other approaches using simulated data.11

Key words: Correlated component regression, Multicollinearity, High dimensional
data, Big data, PLS regression, Variable selection, Suppressor variables, Scale invari-
ance, Cross-validation

1 Background and Introduction

When correlation between predictor variables is moderate or high, coefficients
estimated using traditional regression techniques become unstable or cannot be
uniquely estimated due to multicollinearity (singularity of the covariance matrix).
In the case of high dimensional data, where the number of predictor variables P
approaches or exceeds the sample size N, such instability is often accompanied by
perfect or near perfect predictions within the analysis sample. However, this seem-

1 All data sets are available on the website statisticalinnovations.com
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ingly good predictive performance is usually associated with overfitting, and tends
to deteriorate when applied to new cases outside the sample.

The primary “regularization” approaches that have been proposed for dealing
with this problem are (1) penalized regression such as Ridge, Lasso and Elastic
Net, and (2) dimension reduction methods such as Principle Component Regression,
and PLS Regression (PLS-R). In this paper we describe a new method similar to
PLS-R called Correlated Component Regression (CCR) and an associated step-down
algorithm for reducing the number of predictors in the model to P∗ < P. CCR has
different variants depending upon the scale type of the dependent variable (e.g. CCR-
linear regression for Y continuous, CCR-logistic regression for Y dichotomous, CCR-
Cox regression for survival data). Unlike the other regularization approaches, the
CCR algorithm shares with traditional maximum likelihood regression approaches
the favorable property of scale invariance.

In this paper we introduce CCR, and describe its performance on various real and
simulated data sets. The basic CCR algorithms are described in Sect. 2. CCR is con-
trasted with PLS-R in a linear regression key driver application with few predictors
(Sect. 3) and in an application with Near Infrared (NIR) data involving many pre-
dictors (Sect. 4). We then describe the CCR extension to logistic regression, linear
discriminant analysis (LDA) and survival analysis and discuss results from simulated
data where suppressor variables are included among the predictors (Sect. 5). Results
from our simulations suggest that CCR may be expected to outperform other sparse
regularization approaches, especially when important suppressor variables are in-
cluded among the predictors. We conclude with a discussion of a hybrid latent class
CCR model extension (Sect. 6).

2 Correlated Component Regression

CCR utilizes K < P correlated components, in place of the P predictors to predict
an outcome variable. Each component Sk is an exact linear combination of the pre-
dictors, X = (X1,X2, . . . ,XP), the first component S1 capturing the effects of those
predictors that have direct effects on the outcome. The CCR-linear regression (CCR-
LM) algorithm proceeds as follows:

Estimate the loading λ (1)
g , on S1, for each predictor g = 1,2, . . . ,P, as the simple

regression coefficient in the regression of Y on Xg , λ (1)
g =

cov(Y,Xg)
var(Xg)

. Then S1 is
defined as a weighted average of all 1-predictor effects:

S1 =
1
P

P

∑
g=1

λ (1)
g Xg (1)

The predictions for Y in the 1-component CCR model are obtained from the
simple OLS regression of Y on S1. Similarly, predictions for the 2-component CCR

model are obtained from the simple OLS regression of Y on S1 and S2, where the
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second component S2, captures the effects of suppressor variables that improve pre-
diction by removing extraneous variation from one or more predictors that have
direct effects. Component Sk′ for k′ > 1, is defined as a weighted average of all
1-predictor partial effects, where the partial effect for predictor g is computed as
the partial regression coefficient in the OLS regression of Y on Xg and all previously
computed components Sk,k = 1, . . . ,k′ − 1. For example, for K = 2 we have:

Y = α + γ(2)1.g S1 +λ (2)
g Xg + ε(2)g (2)

and S2 =
1
P

P
∑

g=1
λ (2)

g Xg, or more simply2 we can write S2 =
P
∑

g=1
λ (2)

g Xg.

As mentioned earlier, predictions for Y in the K-component CCR model are
obtained from the OLS regression of Y on S1, . . . ,SK . For example, for K = 2:

Ŷ =α(2)+b(2)1 S1+b(2)2 S2. In general, K∗ components are computed, where the opti-
mal value, K∗, is determined by M-fold cross-validation (CV). For K = 1, maximum
regularization, no predictor correlation information is used in parameter estimation.
As K is repeatedly incremented by 1, more and more information provided by the
predictor correlations is utilized, and M-fold CV determines the value of K where
near multicollinearity begins to deteriorate the predictive performance, the value
for K∗ being obtained accordingly. Deterioration occurs beginning at K = 3 for the
example illustrated in Sect. 3, and thus K∗ = 2.

Any K-component CCR model can be re-expressed to obtain regression coeffi-
cients for X by substituting for the components as follows:

Ŷ = α(K) +
K

∑
k=1

b(K)
k Sk = α(K) +

K

∑
k=1

b(K)
k

P

∑
g=1

λ (k)
g Xg = α(K) +

P

∑
g=1

βgXg

Thus, the regression coefficient βg for predictor Xg is simply the weighted sum of
the loadings, where the weights are the regression coefficients for the components

(component weights) in the K-component model: βg =
K
∑

k=1
b(K)

k λ (K)
g .

Simultaneous variable reduction is achieved using a step-down algorithm where
at each step the least important predictor is removed, importance defined by the
absolute value of the standardized coefficient β ∗g = (σg/σY )βg, where σ denotes
the standard deviation. M-fold CV is used to determine the two tuning parameters:
the number of components K and number of predictors P.

Consider an example with 6 predictors. For any given value for K, and say
M = 10 folds, the basic CCR algorithm is applied 10 times, generating predictions
for cases in each of the 10 folds3 based on models with all 6 predictors, yielding
a baseline (iteration = 0) CV-R2(K) for P = 6. In iteration 1, the variable reduc-
tion algorithm eliminates 1 predictor, which may not be the same predictor in all 10

2 Going forward, the factor 1/P will be omitted which will not alter the predictions since multi-

plying Sk by P is offset by the OLS estimate for gamma (i.e., γ(K)
k.g becomes γ(K)

k.g /P).
3 The square of the correlation between these predictions and the observed Y yields CV-R2.
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subsamples, each resulting 5-predictor model being used to obtain new predictions
for the associated omitted folds, yielding CV-R2(K) for P = 5. In iteration 2, the
variable reduction process continues resulting in 10 4-predictor models, which
yields CV-R2(K) for P = 4. Following the last iteration, P∗(K) is determined as
the value of P associated with the maximum CV-R2(K).

The basic idea is that by applying the proper amount of regularization through
the tuning of K, we reduce any confounding effects due to high predictor corre-
lation, thus obtaining more interpretable regression coefficients, and better, more
reliable predictions. In addition, tuning P tends to eliminate irrelevant or otherwise
extraneous predictors and further improve both prediction and interpretability.

Since the optimal P may depend on K, P should be tuned for each K, the optimal
(P∗,K∗) yielding the global maximum for CV-R2. Alternatively, as a matter of pref-
erence a final model may be based on a smaller value for P and/or K, such that the
resulting CV-R2 is within c standard errors of the global maximum, where c≤ 1.

Since K can never exceed P, for P = K, the model becomes saturated and is
equivalent to the traditional regression model.4 For pre-specified K, when P is re-
duced below K, we maintain the saturated model by also reducing K so K = P. For
example, for K = 4, when we step down to 3 predictors, we reduce K so K = 3.
Similarly, when we step down to 1 predictor, K = 1. This is similar to traditional
stepwise regression with backwards elimination.

Prime predictors, those having direct effects, are identified as those having sub-
stantial loadings on S1, and suppressor variables, as those having substantial load-
ings on one or more other components, and relatively small loadings on S1. See
Sect. 5 for further insight into suppressor variables.

Since CCR is scale invariant, it yields identical results regardless of whether pre-
dictions are based on unstandardized or standardized predictors (Z-scores). Other
methods such as PLS-R and penalized regression (Ridge Regression, Lasso, Elas-
tic Net) are not scale invariant and hence yield different results depending on the
predictor scaling used.

3 A Simple Example with Six Correlated Predictors

Our first example makes use of data involving the prediction of car prices (Y) as a
linear function of 6 predictors, each having a statistically significant positive corre-
lation with Y (between 0.6 and 0.9).

• N = 24 car models
• Dependent variable: Y = PRICE (car price measured in francs)
• 6 Predictor Variables:

– X1 = CYLINDER (engine measured in cubic centimeters)
– X2 = POWER (horsepower)
– X3 = SPEED (top speed in kilometers/hour)

4 See Appendix for proof of this equivalence.
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– X4 = WEIGHT (kilograms)
– X5 = LENGTH (centimeters)
– X6 = WIDTH (centimeters)

The OLS regression solution (Table 1a) imposes no regularization, maximizing
R2 in the training sample. This solution is equivalent to that obtained from a satu-
rated (K = P = 6 components) CCR model. Since this solution is based on a rela-
tively small sample and correlated predictors, it is likely to overfit the data and the
R2 is likely to be an overly optimistic estimate of the true population R2. Table 1a
shows only 1 statistically significant coefficient (0.05) and unrealistic (negative) co-
efficient estimates for 3 of the 6 predictors, which are problems that can be explained
by model overfitting due to imposing no regularization.

Table 1: (a) (left) shows OLS Regression Coefficient results (P = K = 6) and (b)
(right) shows R2 and CV-R2 for different numbers of components K and for the final
CCR model (P = 3,K = 2)

Standardized
Unstandardized coefficients coefficients

β̂ Std. error β̂ ∗ t Sig.

CYLINDER –1.9 33.6 –0.02 −0.06 0.95

POWER 1,315.9 613.5 0.89 2.14 0.05

SPEED –472.5 740.3 –0.21 −0.64 0.53

WEIGHT 45.9 100.0 0.18 0.46 0.65

LENGTH 209.6 504.2 0.15 0.42 0.68

WIDTH –505.4 1,501.6 –0.07 −0.34 0.74

(Constant) 12,070.4 194,786.6 0.06 95

P K R2 CV-R2

6 1 0.7852 0.7457

6 2 0.8189 0.7461
6 3 0.8449 0.6732

6 4 0.8469 0.6455

6 5 0.8474 0.6371

6 6 0.8474 0.6342

3 2 0.8362 0.7690

To determine the value for K that provides the optimal amount of regularization,
we choose the CCR model that maximizes the CV-R2. For cross-validation we used
10 rounds of 6-folds, since 24 divides evenly into 6, each fold containing exactly 4
cars. Table 1b shows that K = 2 components provides the maximum CV-R2 based on
P = 6 predictors, and when the step-down algorithm is employed, CV-R2 increases
to 0.769 which occurs with P∗ = 3 predictors.5 While traditional OLS regression
yields a higher R2 in the analysis sample (0.847 vs. 0.836), the 2-component CCR

model with 3 predictors yields a higher CV-R2, suggesting that this CCR model will
outperform6 OLS regression when applied to new data.

Further evidence of improvement for the 2-component models over OLS regres-
sion is that the coefficients are more interpretable. Table 2 shows that the coefficients
in the 2-component CCR models are all positive, which is what we would expect if
we were to interpret them as measures of effect.7

5 The analysis was conducted using the CORExpress® package (patent pending) [1].
6 Since multiple rounds of 6-folds are performed, standard errors are available, which yield 95%
confidence intervals for CV-R2 of 0.746 ± 0.04 for the CCR model with 6 predictors and 0.769 ±
0.056 for the 3-predictor CCR model.
7 Interestingly, each CCR model based on an insufficient amount of regularization (K > 2) provides
uninterpretable coefficients, in each case exactly three coefficients turning out negative.
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Table 2 Comparison of re-
sults from PLSR (a) (left) with
unstandardized predictors,
and (b) with standardized
predictors, and CCR (c) with-
out variable selection and (d)
(right) with variable selection

PLS with PLS with
unstandardized standardized CCR with

predictors predictors CCR selection
(K∗ = 3) (K∗ = 2) (K∗ = 2) (K∗ = 2)

Training R2 0.83 0.81 0.82 0.84
CV-R2 0.69 0.76 0.75 0.77

Predictors β̂ ∗ β̂ ∗ β̂ ∗ β̂ ∗

CYLINDER −0.02 0.19 0.19 0.00

POWER 0.43 0.31 0.37 0.45

SPEED 0.17 0.22 0.20 0.10

WEIGHT 0.48 0.18 0.17 0.44

LENGTH −0.05 0.08 0.02 0.00

WIDTH 0.00 0.01 0.05 0.00

PLS-R with standardized predictors, the recommended PLS-R option when pre-
dictors are measured in different units, yields similar results to CCR here. When
the predictors remain unstandardized, PLS-R yields more components (K∗ = 3), two
negative coefficients, and substantially worse predictions (CV-R2 = 0.69), as the
much larger variance for the predictor CYLINDER causes this predictor to domi-
nate the first component, requiring two additional components to recover.

4 An Example with Near Infrared (NIR) Data

Next, we analyze high dimensional data involving N = 72 biscuits, each measured
at each of P = 700 near infrared (NIR) wave-lengths corresponding to every other
wavelength between the range 1,100–2,500 [2]. Since all 700 predictors are mea-
sured in comparable units in this popular PLS-R application, typically the 700 pre-
dictors are analyzed on an unstandardized basis, or standardized using Pareto scaling
[3] where the scaling factor is the square root of the standard deviation. As shown
above, results from PLS-R differ depending upon whether the predictors are stan-
dardized or not, while for the scale invariant CCR, no decision needs to be made
regarding such standardization, predictions being identical in either case.

The goal of modeling here is to reduce costs of monitoring fat content by pre-
dicting the percent fat based on spectroscopic absorbance variables from the NIR

frequencies. Following Kraemer and Boulesteix [4], we use N = 40 samples as the
calibration (training) set to develop models based on the 700 wave lengths.

It is well known that for NIR data, a column plot of regression coefficients exhibit
a sequence of oscillating patterns, the most important wavelength ranges being those
with the highest peak-to-peak amplitude. For example, for these data, wavelengths
in the 1,500–1,598 range yield a peak to peak amplitude of 0.109− (−0.203) =
0.312, based on a CCR model with K = 9 (see Fig. 1).

Table 3a compares the corresponding amplitudes obtained from CCR and both
unstandardized and Pareto standardized PLS-R models, where the number of com-
ponents is determined based on 10 rounds of 5-folds. As can be seen in Table 3a, all
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three models agree that absorbances from the 1,500–1,598 wavelengths tend to be
among the most important (relatively large amplitude).
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Fig. 1: Column plot of standardized coefficients output from XLSTAT-CCR

Previous analyses of these data excluded the highest 50 wavelengths since they
were “. . . thought to contain little useful information” [5]. Table 3a shows that CCR

identifies these wavelengths as least important (smallest amplitude), but the ampli-
tude of 0.44 resulting from PLS-R suggests that these wavelengths are important.

Figure 2 shows the standardized coefficients for the 50 highest wavelengths for
CCR and PLS-R models. As can be seen, the weights obtained from the CCR model
are small and diminishing, the coefficients for the highest wavelengths being very
close to 0. In contrast, PLS-R weights are quite high and show no sign of diminishing
for the highest wavelengths (Fig. 2(right)), a similar pattern being observed for PLS-
Pareto.

One possible reason that the conclusions from CCR and PLS-R differ regarding
the importance of these high wavelengths is that its scale invariance property allows
CCR to better determine that the high variability associated with these wavelengths
is due to increased amounts of measurement error. In other words, the much higher
amplitude obtained from PLS-R is likely due to the higher standard deviations of the
absorbances in this range.
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Table 3: (a) (left) Comparison of peak-to-peak amplitudes for various frequency
ranges based on three models, with the most and least important ranges according
to CCR in bold, and (b) (right) comparison of CV-R2 (highest is bold) obtained
from three models with (P = 700) and without (P = 650) the highest wavelengths
included among the predictors

Peak-to-peak amplitude
based on standardized coefficients

CCR PLSR PLS-Pareto
Wavelengths (K = 9) (K = 13) (K = 13)

1,100–1,198 0.16 0.12 0.19

1,200–1,298 0.24 0.15 0.24

1,300–1,398 0.11 0.08 0.13

1,400–1,498 0.27 0.25 0.21

1,500–1,598 0.31 0.31 0.32
1,600–1,698 0.23 0.14 0.15

1,700–1,798 0.27 0.24 0.22

1,800–1,898 0.20 0.15 0.17

1,900–1,998 0.07 0.47 0.36

2,000–2,098 0.22 0.37 0.30

2,100–2,198 0.16 0.17 0.15

2,200–2,298 0.18 0.30 0.29

2,300–2,398 0.18 0.55 0.47

2,400–2,498 0.06 0.44 0.25

CCR PLSR PLS-Pareto

K P = 700 P = 650 P = 700 P = 650 P = 700 P = 650

1 0.237 0.232 0.260 0.257 0.247 0.245

2 0.506 0.589 0.345 0.461 0.412 0.477

3 0.759 0.860 0.736 0.725 0.721 0.736

4 0.914 0.932 0.906 0.835 0.922 0.882

5 0.948 0.946 0.916 0.928 0.933 0.917

6 0.948 0.951 0.919 0.947 0.927 0.949

7 0.945 0.947 0.930 0.942 0.936 0.946

8 0.955 0.953 0.936 0.938 0.944 0.948

9 0.962 0.960 0.932 0.952 0.946 0.952

10 0.960 0.963 0.939 0.958 0.946 0.961

11 0.957 0.959 0.942 0.959 0.951 0.962
12 0.958 0.959 0.949 0.958 0.952 0.961

13 0.958 0.959 0.950 0.956 0.954 0.9059

14 0.958 0.958 0.947 0.953 0.953 0.957

15 0.958 0.957 0.946 0.952 0.952 0.956

CCR: Fat / Standardized coefficients PLS(unst): Fat / Standardized coefficients
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Fig. 2: Comparison of column plots of standardized coefficients for 50 high-
est wavelengths based on the CCR (left) vs. PLS-R estimated with unstandardized
predictors (right)
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To test the hypothesis that these higher wavelengths tend to be unimportant, we
re-estimated the models after omitting these variables. Table 3b shows that for all
three models, the CV-R2 increases when these variables are omitted, supporting the
hypothesis that these wavelengths are not important.

In order to compare the predictive performance of CCR with other regularization
approaches, 100 simulated samples of size N = 50 were generated with 14 predic-
tors according to the assumptions of OLS regression. An additional 14 extraneous
predictors, correlated with the 14 true predictors, plus 28 irrelevant predictors, were
also generated and included among the candidate predictors. The results indicated
that CCR outperformed PLS-R, Elastic Net, and sparse PLS with respect to mean
squared error, and several other criteria. All methods were tuned using an indepen-
dent validation sample of size 50 (for more details, see [6]).

5 Extension of CCR to Logistic Regression, Linear
Discriminant Analysis and Survival Analysis

When the dependent variable is dichotomous, the CCR algorithm generalizes di-
rectly to CCR-LOGISTIC and CCR-LDA respectively depending upon whether no
assumptions are made about the predictor distributions, or whether the normality
assumptions from linear discriminant analysis are made. In either case, the gener-
alization involves replacing Y by Logit(Y ) on the left side of the linear equations.
Thus, for example, under CCR-LOGISTIC and CCR-LDA Eq. 2 becomes:

Logit(Y ) = α + γ(2)1.g S1 +λ (2)
g Xg (3)

where parameter estimation in each regression equation is performed by use of the
appropriate ML algorithm (for logistic regression or LDA).

M-fold cross-validation continues to be used for tuning, but CV-R2 is replaced
by the more appropriate statistics CV-Accuracy and CV-AUC, AUC denoting the
Area Under the ROC Curve. Accuracy is most useful when the distribution of the
dichotomous Y is approximately uniform, about 50% of the sample being in each
group. When Y is skewed, accuracy frequently results in many ties and thus is not as
useful. In such cases AUC can be used as a tie breaker with Accuracy as the primary
criterion or in the case of large skew, AUC can replace accuracy as primary.

For survival data, Cox regression and other important log-linear hazard models
can be expressed as Poisson regression models since the likelihood functions are
equivalent [7]. As such, CCR can be employed using the logit equation above where
Y is a dichotomous variable indicating the occurrence of a rare event. In this case
since Y has an extreme skew, the AUC is used as the primary criterion.

Similar to the result for CCR-linear regression, predictions obtained for the satu-
rated CCR model for dichotomous Y are equivalent to those from the corresponding
traditional model (logistic regression, LDA and Poisson regression).8 In addition, for

8 In general, the saturated model occurs when K ≥ minimum(P,N−1).
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dichotomous Y the 1-component CCR model is equivalent to Naı̈ve Bayes, which is
also called diagonal discriminant analysis [8] in the case of CCR-LDA.

In a surprising result reported in [9], for high dimensional data (small samples
and many predictors) generated according to the LDA assumptions, traditional LDA

does not work well, and is outperformed by Naı̈ve Bayes. Because of the equiva-
lences described above, this means that the 1-component CCR model should outper-
form the saturated CCR model under such conditions. However, we know that the
Naı̈ve Bayes model will not work well if predictors include 1 or more important
suppressor variables, since suppressor variables tend to have 0 loadings on the first
component and require at least two components for their effects to be captured in
the model [10]. Thus, a CCR model with two components should outperform Naı̈ve
Bayes whenever important suppressor variables are included among the predictors.

Despite extensive literature documenting the enhancement effects of suppressor
variables (e.g. [11, 12]), most pre-screening methods omit suppressor variables prior
to model development, resulting in suboptimal models.9 Since suppressor variables
are commonplace and often are among the most important predictors in a model
[10], such screening is akin to “throwing out the baby with the bath water.”

In order to compare the predictive performance of CCR with other sparse model-
ing methods in a realistic high dimensional setting, data were simulated according
to LDA assumptions to reflect the relationships among real world data for prostate
cancer patients and normals where at least one important suppressor variable was
among the predictors. The simulated data involved 100 samples each with N = 25
cases in each group, the predictors including 28 valid predictors plus 56 that were
irrelevant. The sparse methods included CCR, sparse PLS-R [13, 14] and the penal-
ized regression methods Lasso and Elastic Net [15–17]. For tuning purposes, cross-
validation with five folds was used with accuracy as the criterion for all methods.

Results showed that CCR with typically 4–10 components outperformed the other
methods with respect to accuracy (82.6% vs. 80.9% for sparse PLS-R, and under
80% for Lasso and Elastic Net), and fewest irrelevant predictors (3.4 vs. 6.2 for
Lasso, 11.5 for Elastic Net and 13.1 for sparse PLS-R). The most important variable,
which was a suppressor variable, was captured in the CCR model in 91 of the 100
samples compared to 78 for sparse PLS-R, 61 for elastic net and only 51 for Lasso.
For further details of this and other simulations see [6].

6 Extension to Latent Class Models

In practice, sample data often reflects two or more distinct subpopulations (latent
segments), with different intercepts and/or different regression coefficients, possibly
due to different key drivers or at least different effects for the key drivers. In this
section we describe a 2-step hybrid approach for identifying the latent segments
without use of the predictors (step 1) and then using CCR to develop a predictive

9 For a rare exception, ISIS (see [19]) corrects for the exclusion of suppressor variables by the
popular SIS screening. CCR has been shown to outperform ISIS in a simulation study [10].
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model based on a possibly large number of predictors (step 2). If the predictors
are characteristics of the respondents, then the dependent variable (Y ) would be the
latent classes, while if the predictors were attributes of objects being rated, Y would
be taken as the ratings.

As an example of the first case where the latent segments have different inter-
cepts, in step 1 a latent class (LC) survival analysis was conducted on a sample of
patients with late stage prostate cancer. The LC model identified both long-term and
short term survival groups [18]. The goal in that study was to use gene expression
measurements to predict whether patients belong to the longer or shorter survival
class. Since the relevant genes were not known beforehand, the large number of
available candidate predictors (genes) ruled out use of traditional methods.

In this case, CCR can be used to simultaneously select the appropriate genes and
develop reliable predictions of LC membership based on the selected genes. One
way to perform this task is to predict the dichotomy formed by the two groups of
patients classified according to the LC model. However, this approach is suboptimal
because the classifications contain error due to modal assignment. That is, assigning
patients with a posterior probability of say 0.6 of being a long term survivor to
this class (with probability 1) ignores the 40% expected misclassification error (1−
0.6= 0.4). The better way is to perform a weighted logistic (or LDA) CCR regression,
where posterior probabilities from the LC model serve as case weights.

Table 4: Results from CCR showing that P = 3 of the 16 attributes were selected for
inclusion in the model together with the random intercept CFactor1

Results for segment 1

Standardized
Variable coefficient

CFactor1 0.425

Fructose −0.128

Sweeteningpower 0.238

Acidity −0.325

Results for segment 2

Standardized
Variable coefficient

CFactor1 0.555

Sweeteningpower −0.169

Smellintensity −0.129

Acidity 0.214

As an example of the second case, consider ratings on 6 different orange juice
(OJ) drinks provided by 96 judges [20]. Based on these ratings, in step 1 a LC regres-
sion determines that there are two latent segments10 exhibiting different OJ prefer-
ences. In step 2, separate weighted least squares CCR regressions are performed for
each class to predict ratings based on the 16 OJ attributes. For a given class, posterior
membership probabilities for that class are used as case weights.

For this application CCR is needed because traditional regression can include no
more than six attributes in the model due to the fact that the attributes describe the
six juices rather than the respondents. In addition, since these data consist of mul-
tiple records (6) per case, residuals from records associated with the same case are
correlated, a violation of the independent observations assumption. This violation

10 The number of classes was determined based on the Bayesian Information Criterion. For further
details of this methodology, see [21].
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is handled in step 1 by the LC model satisfying the “local independence” assump-
tion. In step 2, the cross-validation is refined by assigning records associated with
the same case to the same fold. Separate CCR models are developed for each LC

segment, and then combined to obtain predicted ratings, providing substantial im-
provement over the traditional regression (CV-R2 increases from 0.28 to 0.48). Re-
sults of step 2 are summarized in Table 4, showing that the most important attribute
for both segments is acidity since it has the highest standardized coefficient mag-
nitude. Segment 1 tends to prefer juices with low acidity (negative coefficient) and
high sweetening power (positive coefficient) while the reverse is true for segment
2. Details of this analysis are provided in tutorials from www.statisticalinnovations.
com.
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Appendix

Claim: OLS predictions based on X are equivalent to predictions based on S = XA,
where A is a nonsingular matrix.

Proof:

• Predictions based on X :

Ŷ = X β̂ = X(X ′X)−1X ′Y.

• Predictions based on S:

Ŷ = Sγ̂

= S(S′S)−1S′Y = XA((XA)′XA)−1(XA)′Y

= XA(A′X ′XA)−1A′X ′Y = XAA−1(X ′X)−1A′−1A′X ′Y

= X(X ′X)−1X ′Y.
Equations 4 and 5 above follow from standard operations with square matrices:

(BC)′ =C′B′ and (BC)−1 =C−1B−1.

It also follows that the OLS regression coefficients for X are identical to those
obtained from CCR with a saturated model (i.e., K = P).

www.statisticalinnovations.com
www.statisticalinnovations.com
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Integrating Partial Least Squares Correlation
and Correspondence Analysis for Nominal Data

Derek Beaton, Francesca Filbey, and Hervé Abdi

Abstract We present an extension of PLS—called partial least squares
correspondence analysis (PLSCA)—tailored for the analysis of nominal data. As
the name indicates, PLSCA combines features of PLS (analyzing the information
common to two tables) and correspondence analysis (CA, analyzing nominal data).
We also present inferential techniques for PLSCA such as bootstrap, permutation,
and χ2 omnibus tests. We illustrate PLSCA with two nominal data tables that store
(respectively) behavioral and genetics information.

Key words: Partial least squares, Correspondence analysis, Multiple correspon-
dence analysis, Chi-square distance, Genomics

1 Introduction

With the advent of relatively inexpensive genome-wide sequencing it is now pos-
sible to obtain large amounts of detailed genetic information on large samples of
participants, and, so, several large sample studies are currently under way whose
main goal is to relate genetics to behavior or clinical status. In these studies, the ge-
netic information of each participant is a long list of pairs (one per chromosome)
of DNA nucleotides (A, T , C, and G)—which could occur in 24 = 16 different
configurations—grouped in 23 chromosomes. However, only genomic locations that
show enough variability in a population are used. These locations of variability are
called single nucleotide polymorphisms (SNPs). Each SNP has a major allele (e.g.,
A), which is the most frequent nucleotide (in a population), and a minor allele (e.g.,
T ; rare in a population but required to be found in at least 5% of the population to
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be considered “relevant”). Thus, in practice only three variants for each location are
used: the major homozygote (e.g., AA), the minor homozygote (e.g., T T ), and the
heterozygote (e.g., AT ).

Multivariate data sets of SNPs are most often re-coded through a process of count-
ing alleles: 0, 1, or 2. While 1 is always the heterozygote, 0 and 2 could be am-
biguous. For example, minor homozygotes can be coded according to two different
schemes: (1) having 2 minor alleles [1] or (2) having 0 major alleles [2]. In most
analyses, the SNPs are treated as quantitative data because most statistical methods
used rely upon quantitative measures [3–5]. Some multivariate approaches for SNPs
include independent components analysis (ICA) [6], sparse reduced-rank regression
(SRRR) [7], multivariate distance matrix regression (MDMR) [8, 9], and PLS re-
gression (PLSR) [10, 11]. It should be noted that both SRRR and MDMR are PLSR-
like techniques. However, these methods depend on the allele counting approach
that assumes a uniform linear increase for all SNPs from 0 to 1 and from 1 to 2,
but SNPs do not identify how much of an allele is present, only which allele (i.e.,
nucleotide variation) is present. Because the assumptions of a quantitative coding
scheme seem unrealistic, we have decided to use a qualitative coding scheme and
to consider that the values 0, 1, and 2 represent three different levels of a nominal
variable (e.g., 0 = AA, 1 = AT , and 2 = T T ). In studies relating genetics and behav-
ior, behavior is evaluated by surveys or questionnaires that also provide qualitative
answers. So the problem of relating genetics and behavior reduces to finding the
information common to two tables of qualitative data. Partial least square correla-
tion (PLSC, see [12, 14]) would be an obvious solution to this “two-table problem”
but it works only for quantitative data. An obvious candidate to analyze one ta-
ble of qualitative data is correspondence analysis (CA), which generalizes principal
component analysis (PCA) to qualitative data. In this paper, we present partial least
squares-correspondence analysis (PLSCA): A generalization of PLSC—tailored for
qualitative data—that integrates features of PLSC and CA. We illustrate PLSCA with
an example on genetics and substance abuse.

2 PLSC and PLSCA

2.1 Notations

Matrices are denoted by bold face upper-case letters (e.g., X), vectors by bold face
lower case letters (e.g., m). The identity matrix is denoted I. The transpose operation
is denoted T and the inverse of a square matrix is denoted −1. The diag{} operator
transforms a vector into a diagonal matrix when applied to a vector and extracts the
diagonal element of a matrix when applied to a matrix.
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2.2 PLSC: A Refresher

Partial least square correlation [12, 13] is a technique whose goal is to find and
analyze the information common to two data tables collecting information on the
same observations. This technique seems to have been independently (re)discovered
by multiple authors and therefore, it exists under different names such as “inter-
battery analysis” (in 1958 and probably the earliest instance of the technique, [15]),
“PLS-SVD” [12, 17, 18], “intercorrelation analysis,” “canonical covariance analy-
sis,” [19], “robust canonical analysis” [20], or “co-inertia analysis” [21]. In PLSC,
X and Y denote two I by J and I by K matrices that describe the I observations
(respectively) by J and K quantitative variables. The data matrices are, in general,
pre-processed such that each variable has zero mean and unitary norm; the pre-
processed data matrices are denoted ZX and ZY. The first step of PLSC is to com-
pute the correlation matrix R = ZX

TZY, whose singular value decomposition (SVD,
[22–24]) is R = UXΔΔΔUY

T. The matrices UX and UY contain (respectively) the left
and right singular vectors of R. In PLSC parlance, the singular vectors are called
saliences [25]. The diagonal matrix ΔΔΔ stores the singular values of R: each singular
value expresses how much a pair of singular vectors “explains R.” To express the
saliences relative to the observations described in ZX and ZY, these matrices are
projected onto their respective saliences. This creates two sets of latent variables—
which are linear combinations of the original variables— which are denoted LX and
LY, and are computed as:

LX = ZXUX and LY = ZYUY. (1)

A pair of latent variables (i.e., one column from LX and one column LY) is denoted
���X,� and ���Y,� and together these two latent variables reflect the relationship between
X and Y where the singular value associated to a pair of latent variables is equal to
their covariance (see, e.g., [12]).

2.2.1 What Does PLSC Optimize?

The goal of PLSC is to find pairs of latent vectors ���X,� and ���Y,� with maximal co-
variance under the constraints that pairs of latent vectors of different indices are
uncorrelated and coefficients of latent variables are normalized [15, 16]. Formally,
we want to find:

���X,� = ZXuX,� and ���Y,� = ZYuY,� such that ���TX,����Y,� = max (2)

under the constraints that

���TX,����Y,�′ = 0 when � �= �′ (3)

(note that ���TX,����X,�′ and ���TY,����Y,�′ are not required to be null) and

uT
X,�uX,� = uT

Y,�uY,� = 1 . (4)
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2.3 PLSCA

In PLSC, X and Y are I by J and I by K matrices that describe the same I observations
with (respectively) NX and NY nominal variables. These variables are expressed with
a 0/1 group coding (i.e., a nominal variable is coded with as many columns as it has
levels and a value of 1 indicates that the observation has this level, 0 if it does not).
The centroid of X (resp., Y) is denoted x̄ (resp., ȳ), the relative frequency for each
column of X, (resp., Y) is denoted mX (resp. mY). These centroids are computed as:

mX =
(
XT1

)×N−1
X and mY =

(
YT1

)×N−1
Y . (5)

In PLSCA, each variable is weighted according to the information it provides. Be-
cause a rare variable provides more information than a frequent variable, the weight
of a variable is defined as the inverse of its relative frequency. Specifically, the
weights of X (resp Y) are stored as the diagonal elements of the diagonal matrix WX
(resp. WY) computed as: WX = diag{mX}−1 and WY = diag{mY}−1. The first step
in PLSCA is to normalize the data matrices such that their sum of squares is equal to
respectively 1

NX
and 1

NY
. Then the normalized matrices are centered in order to elim-

inate their means. The centered and normalized matrices are denoted ZX and ZY and
are computed as: ZX =

(
X− 1x̄T

)× I−
1
2 N−1

X and ZY =
(
Y− 1ȳT

)× I−
1
2 N−1

Y . Just
like in PLSC, the next step is to compute the matrix J by K matrix R as R = ZX

TZY.
The matrix R is then decomposed with the generalized SVD as:

R = UXΔΔΔUT
Y with UT

XWXUX = UT
YWYUY = I . (6)

In PLSCA the saliences, denoted SX and SY, are slightly different from the singular
vectors and are computed as SX = WXUX and SY = WYUY. Note that

SX
TWX

−1SX = I and SY
TWY

−1SY = I. (7)

To express the saliences relative to the observations described in ZX and ZY, these
matrices are projected onto their respective saliences. This creates two sets of la-
tent variables—which are linear combinations of the original variables—that are
denoted LX and LY and are computed as:

LX = ZXSX = ZXWXUX and LY = ZYSY = ZYWYUY . (8)

2.4 What Does PLSCA Optimize?

In PLSCA, the goal is to find linear combinations of ZX and ZY called latent vari-
ables ���X,� and ���Y,� which have maximal covariance under the constraints that pairs
of latent vectors with different indices are uncorrelated and that the coefficients of
each latent variables are normalized to unit length. Formally, we want to find

���X,� = ZXWXuX,� and ���Y,� = ZYWYuY,� such that ���TX,� ���Y,� = max, (9)
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under the constraints that

���TX,����Y,�′ = 0 when � �= �′ (10)

and
uT

X,�WX
−1uX,� = uT

Y,�WY
−1uY,� = 1. (11)

It follows from the properties of the generalized SVD [22] that uX,� and uY,� are
singular vectors of R. Specifically, the product of the matrix of latent variables can
be rewritten as (from Eq. 8):

LX
TLY = UT

XWXZT
XZYWYUY = UXWT

XRWYUY = UXWT
XUXΔΔΔUYWYUY =ΔΔΔ .

(12)
As a consequence, the covariance of a pair of latent variables ���X,� and ���Y,� is equal
to their singular value:

���TX,����Y,� = δ� . (13)

So, when � = 1, we have the largest possible covariance between the pair of latent
variables. Also, the orthogonality constraint for the optimization is automatically
satisfied because the singular vectors constitute an orthonormal basis for their re-
spective matrices. So, when � = 2 we have the largest possible covariance for the
latent variables under the constraints that the latent variables are uncorrelated with
the first pair of latent variables and so on for larger values of �. So PLSCA and CA

differ mostly by how they scale salience vs. factors scores and latent variables vs.
supplementary factor scores. Correspondence analysis lends itself to biplots because
the scaling scheme of factors/saliences and factor scores/latent variables allows all
of them to be plotted on the same graph as they both have the same scale.

2.4.1 Links to Correspondence Analysis

In this section we show that PLSCA can be implemented as a specific case of cor-
respondence analysis (CA) which, itself, can be seen as a generalization of PCA to
nominal variables ([26, 27], for closely related approaches see [21, 28, 29]). Specif-
ically, CA was designed to analyze contingency tables. For these tables, a standard
descriptive statistic is Pearson’s ϕ2 coefficient of correlation whose significance is
traditionally tested by the χ2 test (recall that the coefficient ϕ2 is equal to the ta-
ble’s independence χ2 divided by the number of elements of the contingency table).
In CA, ϕ2—which, in this context, is often called the total inertia of the table—is
decomposed into a series of orthogonal components called factors. In the present
context, CA will first create, from X and Y, a J by K contingency table denoted
S∗ and computed as: S∗ = XTY. This contingency table is then transformed into
a correspondence matrix (i.e., a matrix with nonnegative elements whose sum is
equal to 1) denoted S and computed as S = S∗s−1

++ (with s++ being the sum of all
the elements of S∗). The factors of CA are obtained by performing a generalized
SVD on the double centered S matrix obtained as:

(
S−mXmY

T
)
. Simple algebraic
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manipulation shows that this matrix is, in fact, equal to matrix R of PLSCA. Corre-
spondence analysis then performs the SVD described in Eq. 6. The factor scores for
the X and Y set are computed as

FX = WXUXΔΔΔ and FY = WYUYΔΔΔ . (14)

For each set, the factor scores are pairwise orthogonal (under the constraints im-
posed by WX

−1 and WY
−1) and the variance of the columns (i.e., a specific factor)

of each set is equal to the square of its singular value. Specifically:

FX
TWX

−1FX = FY
TWY

−1FY =ΔΔΔ 2 . (15)

The original X and Y matrices can be projected as supplementary elements on
their respective factor scores. These supplementary factors scores denoted respec-
tively GX and GY are computed as

GX = N−1
X XFXΔΔΔ−1 = N−1

X XWXUX and GY = N−1
Y YFYΔΔΔ−1 = N−1

Y YWYUY .
(16)

Note that the pre-multiplication by NX and NY transforms the data matrices such
that each row represents frequencies (this is called a row profile in correspondence
analysis) and so each row now sums to one. This last equation shows that an ob-
servation is positioned as the barycenter of the coordinates of its variables. These
projections are very closely related to the latent variables (see Eqs. 8 and 16) and
are computed as

GX = I
1
2 LX and GY = I

1
2 LY. (17)

Both PLS and CA contribute to the interpretation of PLSCA. PLS shows that the
latent variables have maximum covariance, CA shows that factors scores have max-
imal variance and that this variance “explains” a proportion of the ϕ2 associated to
the contingency table. Traditionally CA is interpreted with graphs plotting one di-
mension against the other. For these graphs, using the factor scores is preferable to
the saliences because these plots preserve the similarity between elements. In CA, it
is also possible to plot the factor scores of X and Y in the same graph (because they
have the same variance) which is called a symmetric plot. If one set is privileged, it
is possible to use an asymmetric plot in which the factor scores of the privileged set
have a variance of one and the factor scores of the other set have a variance of δ 2.

2.5 Inference

Later in this paper, we present with an example three inferential methods of PLSCA:
(1) a permutation test of the data for an omnibus χ2 test to determine if, overall,
the structure of the data is not due to chance, (2) a permutation test of the data to
determine what, if any factors are not due to chance, and (3) a bootstrap test to
determine which measures contribute a significant amount of variance.
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3 Illustration

To illustrate how PLSCA works and how to interpret the results, we have created a
small example from a subset of data to be analyzed. The data come from a study on
the individual and additive role of specific genes and substance abuse in marijuana
users [30]. Here, our (toy) hypothesis is that marijuana abusing participants (I =
50) with specific genotypes are more likely to frequent additional substances (i.e.,
certain genotypes predispose people to be polysubstance users).

3.1 Data

Each participant is given a survey that asks if they do or do not use certain (other)
drugs—specifically, ecstasy (e), crack/cocaine (cc) or crystal meth (cm). Addition-
ally, each participant is genotyped for COMT (which inactivates certain neurotrans-
mitters) and FAAH (modulates fatty acid signals). The data are arranged in matrices
X (behavior) and Y (SNPs; see Table 1).

Table 1: Example of nominal coding of drug use (left) and genotype (right).
(a) Drug use (b) Genotypes

(a)

CC CM E

yes no yes no yes no

Subj.1 1 0 1 0 1 0

Subj.2 1 0 0 1 0 1

. . . . . . . . . . . . . . . . . . . . .

Subj.49 0 1 1 0 0 1

Subj.50 1 0 0 1 1 0

(b)

COMT FAAH

AG AA GG CA AA CC

Subj.1 1 0 0 1 0 0

Subj.2 0.56 0.20 0.22 1 0 0

. . . . . . . . . . . . . . . . . . . . .

Subj.49 1 0 0 1 0 0

Subj.50 1 0 0 0 1 0

Sometimes genotype data cannot be obtained (e.g., COMT for Subject 2). This
could happen if, for example, the saliva sample were too degraded to detect which
nucleotides are present. Instances of missing data receive the average values from
the whole sample. From X and Y we compute R (Table 2), which is a contingency
table with the measures (columns) of X on the rows and the measures (columns) of
Y on the columns. The R matrix is then decomposed with CA.
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Table 2: The contingency table produced from X and Y

COMT FAAH

AG AA GG CA AA CC

cc.yes 18.705 5.614 6.682 15.927 3.366 11.707

cc.no 9.705 4.614 4.682 13.341 0.293 5.366

cm.no 19.841 7.023 9.136 20.098 1.512 14.39

cm.yes 8.568 3.205 2.227 9.171 2.146 2.683

e.yes 10.000 1.000 9.000 10.171 2.146 7.683

e.no 18.409 9.227 2.364 19.098 1.512 9.39

3.2 PLSCA Results

With factor scores and factor maps, we can now interpret the results. The factor
map is made up of two factors (1 and 2), which are displayed as axes. As in all
SVD-based techniques, each factor explains a certain amount of variance within the
dataset. Factor 1 (horizontal) explains 69% of the variance; Factor 2 explains 21%.
Plotted on the factor map we see the rows (survey items, purple) and the columns
(SNPs, green) from the R matrix (after decomposition). In CA, the distances between
row items are directly interpretable. Likewise, the distances between column items
are directly interpretable. However, the distances between row items and column
items are not directly interpretable; the distances are relative. That is, “e.yes” is
more likely to occur with COMT.GG than other responses.

In Fig. 1 on Factor 1, we see an interesting dichotomy. Marijuana users who have
used crystal meth (cm.yes) are unlikely to use other drugs (e.no, cc.no); whereas
marijuana users who have not used crystal meth (cm.no) may have used other drugs
(e.yes, cc.yes). One explanation for this dichotomy is that ecstasy and cocaine could
be considered more “social” drugs, whereas crystal meth is, socially, considerably
frowned upon. But on Factor 2 we see that all “yes” responses occur above 0, where
all “no” responses occur below 0. In this case, we can call Factor 1 “social drug
use”, and Factor 2 “any drug use”. It is important to note that items (both rows
and columns) near the origin occur in high frequency and therefore are considered
“average.” Items that are not average help with interpretation. Additionally, we see
SNPs with our responses on the factor map. From this map, we know that FAAH.AA,
COMT.GG and COMT.AA are rare (small frequency). Furthermore, we can see that
FAAH.AA is more likely to occur with other drug use (besides marijuana) than no
drug use, compared to other SNPs.
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cc.yes

e.yes

FAAH.AA

cm.yes

COMT.AG

cc.no

e.no
COMT.AA FAAH.CA

cm.no COMT.GGFAAH.CC

Fig. 1: Factors 1 (horizontal: 69% of variance) and 2 (vertical: 21% of variance).
From the relative distances between SNPs and other drug use, we can infer that
FAAH.AA is more likely to occur with other drug use (besides marijuana) than no
drug use, compared to other SNPs; or, the AA allele of FAAH may predispose indi-
viduals to polysubstance abuse

3.3 Latent Variables

In the PLS framework, we compute latent variables from the singular vectors. The
latent variables of X (LX) and Y (LX) are computed in order to show the relation-
ships of participants with respect to SNPs (X; Fig. 2a) and behaviors (Y; Fig. 2b). In
the latent variable plots, the circle size grows as more individuals are associated to
it. That is, for example, in Fig. 2a, the large circle on the bottom left, with the num-
ber 13 in it, represents 13 individuals. This dot indicates that 13 individuals have the
same patterns of responses to drug use.

3.4 Inferential Results

3.4.1 Permutation Tests

A permutation test of the data can test the omnibus null hypothesis. This test is
performed by computing the χ2 value (or alternatively, the total inertia) of the entire
table for each permutation. The original table has a χ2 value of 19.02, which falls
outside the 95 %-ile for 1,000 permutations (which is 18.81) and this indicates that
the overall structure of the data is significant (see Fig. 3).The same permutation
tests are used to determine which components contribute more variance than due to
chance. We test the components with the distribution of the eigenvalues. From the
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toy example, only the third component (not shown above, see Fig. 4) contributes a
significant amount of variance (note that this implementation of the permutation test
is likely to give correct values only for the first factor, because the inertia extracted
by the subsequent factors depend in part upon the inertia extracted by earlier factors;
a better approach would be to recompute the permutation test for a given factor after
having partialled out the inertia of all previous factors from the data matrices).

p < 0.05 cutoff Our value

Fig. 3: The distribution for the omnibus χ2 test. The red line shows the 95 � (i.e.,
p < 0.05) for 1,000 permutations and the green line is the computed inertia value
from our data. The overall structure of our data is significant (p = 0.027)

p < 0.05 cutoff Our value p < 0.05 cutoffOur value p < 0.05 cutoff Our value

Fig. 4: Distributions for the permutation tests for each factor (1, 2, and 3, respec-
tively). The red lines show the 95 � (i.e., p < 0.05) for 1,000 permutations and
the green lines are the eigenvalues of the factors. Factors 1 and 3 reach significance
(p = 0.048 and p = 0.033, respectively) but Factor 2 does not (p = 0.152)
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3.4.2 Bootstrap Ratios

Bootstrap resampling [31] of the observations provides distributions of how each of
the measures (behavior and SNPs) changes with resampling. These distributions are
used to build bootstrap ratios (also called bootstrap intervals t). When a value falls
in the tail of a distribution (e.g., a bootstrap ratio of magnitude > 2), it is considered
significant at the appropriate α level (e.g., p < 0.05). Table 3 shows that COMT
(AA and GG) and ecstasy use (and non-use) contribute significantly to Factor 1.

The bootstrap tests, in conjunction with the descriptive results, indicate that cer-
tain genotypes are related to additional drug use or drug avoidance. More specifi-
cally, COMT.AA is more associated to “no ecstasy use” than any other allele and,
oppositely, COMT.GG is more associated to “ecstasy use” than any other allele.

Table 3: Bootstrap ratios for the first three factors of the PLSCA. Bold values indicate
bootstrap ratios whose magnitude is larger than 2 (i.e. “significant”). (a) Drug use
(b) Genotypes

(a)

Factor 1 Factor 2 Factor 3

cc.yes 0.291 0.714 −0.767

cc.no −0.480 −2.978 0.879

cm.no 0.308 −1.434 −0.475

cm.yes −0.786 1.036 0.697

e.yes 2.458 0.133 0.232

e.no −3.175 −0.157 −0.266

(b)

Factor 1 Factor 2 Factor 3

COMT.AG −0.531 0.336 −0.430

COMT.AA −2.797 −0.218 0.039

COMT.GG 3.982 −0.499 0.403

FAAH.CA −0.858 −0.216 0.834

FAAH.AA 0.535 1.724 −0.033

FAAH.CC 0.693 −0.549 −1.367

4 Conclusion

In this paper, we presented PLSCA, a new method tailored to the analysis of genet-
ics, behavioral and brain imaging data. PLSCA stands apart from current methods,
because it directly analyzes SNPs as qualitative variables. Furthermore, PLSCA is
particularly suited for the concomitant analysis of genetics and high-level behaviors
as explored, for example, with surveys. Surveys are essential for the analysis of ge-
netics and behavior as they are often designed and refined to capture the specific
behaviors of given populations or psychological constructs. This way, these survey



Partial Least Squares Correspondence Analysis 93

data work as an “anchor” to provide variance for genetics data. PLSCA, being the
ideal tool to analyze the relationship between survey and genetic data, will help to
better understand the genetic underpinnings of brains, behavior, and cognition.
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Clustered Variable Selection by Regularized
Elimination in PLS

Tahir Mehmood and Lars Snipen

Abstract Variable selection is a crucial issue in many sciences, including modern
biology, where an example is the selection of genomic markers for classification
(diagnosing diseases, recognizing pathogenic bacteria, etc.). This becomes compli-
cated as biological variables are in general correlated. For example, genes may be
easily correlated, if they provide common biological functions. Variable selection
may dissolve the group effects and mislead the focus onto a specific variable in-
stead of a variable cluster. We study the selection and estimation properties of vari-
able clusters in high dimensional settings when the number of variables exceeds the
sample size. To address the issue a regularized elimination procedure in multiblock-
PLS (mbPLS) is used, where highly correlated variables are clustered together, and
whole groups are selected if they establish a relation with the response.

Key words: Regularization, High-dimension, Collinearity, Clustering, Power, Pa-
rameter estimation

1 Introduction

Multivariate approaches have the potential to provide superior statistical power, in-
creased interpretability of the results and a deeper functional understanding of the
multivariate relationship, without resulting in an excessive number of hypotheses
to test. Hence, it could provide decisive statistical and biological advantages over
classical univariate analysis [3, 4, 8, 14]. However, in applying multivariate analysis
to the problem of recovering complex relationships much is still left to improve. In
particular, multivariate approaches are sensitive to parameter estimation and param-
eter estimation remains a serious challenge, partially because variables tend to show
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extensive co-linearity, which can destroy the asymptotic consistency of the estima-
tors for univariate responses [2]. A possible solution to the challenge is to include
variable selection with these approaches. For biological interpretation of the results,
focus in relational studies is shifting towards the selection of cluster of variables
instead of variables itself [7]. Since genes having common pathways or similar bio-
logical functions tend to have high correlations [15], it is natural to cluster correlated
variables [20]. This is important in a modeling perspective, where incorporating the
biological information on genes with similar function increases the accuracy of de-
tecting the reality behind a phenomenon [9, 12].

For the selection of a cluster of variables, one possibility is to represent a clus-
ter of correlated variables by averaging the variables, then using this representative
member’ only in the model with variable selection [13]. Averaging variables can
include bias in the variable selection [21]. The best subset selection will result in an
unbiased model, and the lasso [16] method is a possible approach, but this tends to
select a single variable instead of a cluster. Yuan and Lin [22] suggest first to select
the relevant variables within each group through lasso and then select the relevant
clusters by using ‘group lasso’. Another possibility is an elastic net to select the
cluster of variables, and if one variable in a cluster is selected the whole cluster will
be selected automatically [23]. However, in this way cluster of highly connected
variables can only be selected if their regression coefficients tend to be equal [21].
This motivates for a powerful structure extraction tool for cluster selection.

In high dimensional data, Partial Least Squares (PLS) is a popular solution to
handle the situation where the number of variables exceeds the sample size. There
are many advances in PLS to deal with different structures of the data. Multiblock
PLS (mbPLS) is a way to deal with the current situation [1, 10, 19], where cluster
of variables can be considered as blocks of variables. For cluster (block) selection,
two main possibilities exist. One is a statistical significance test of block coeffi-
cients [17] and the other are based on block importance on prediction (BIP) [18].
A recently conducted study proposes to select clusters on the basis of stability
to gain better interpretation [6]. Considering this we have used a modification of
regularized stepwise procedure [11], where a significant number of clusters can
be eliminated at the cost of a nonsignificant increase in model RMSE (root mean
square error), which results in better understandability of the model and higher sta-
bility of the selection. The suggested procedure ranks the clusters based on the BIP
measure in a regularized stepwise procedure. Here, we exemplify the applicability
of this procedure in a search for codon/di-codon usage related to optimal growth
temperatures in prokaryote.

2 Approach

2.1 Data

Genome sequences for 44 Actinobacteria genomes and the respective growth tem-
perature information were obtained from NCBI Genome Projects (http://www.ncbi.

http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
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nlm.nih.gov/genomes/lproks.cgi). Optimal growth temperature, of each bacterium,
is the response variable y in data set. For each genome, genes were found by the
gene-finding software Prodigal [5]. For each genome, we collected the frequencies
of each codon and each di-codon over all genes. The predictor variables thus con-
sists of relative frequencies for all codons and di-codons, giving a predictor matrix
X with a total of p = 64+ 642 = 4,160 variables (columns).
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Fig. 1: An overview of the relation between clusters and latent variables in mbPLS

Fig. 2: An overview of the block elimination used in our stepwise elimination pro-
cedure

http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi
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Fig. 3: An overview of the testing-training procedure used in this study. The rect-
angles illustrate the predictor matrix. At level 1 we split at random the data into a
test set and training set (25/75). This was repeated 30 times. Inside our suggested
method, the stepwise elimination, there are two levels of cross-validation. First a
ten-fold cross-validation was used to optimize selection parameters ‘a’ and ‘b’, and
at level 3 leave-one-out cross-validation was used to optimize the regularized mb-
PLS method

2.2 Clusters of Variables

Prior to all model fitting, all variables in y and X were centered and standardized by
subtracting the column mean and dividing by the standard deviation. For any two
variables xi and x j, correlation based pairwise distance d was computed as,

d(xi,x j) =
1− cor(xi,x j)

2

where cor is the correlation between xi and x j and the distance d is a number be-
tween 0 and 1. Next, all variables were represented as nodes in an undirected graph,
and an edge between two nodes exists if the corresponding distance between them
is below some threshold t. A small t results in only very correlated variables be-
ing linked. This graph will form say C number of clusters, and each cluster X (c)

(c= 1, . . . , C) contains pc variables. This defines X=[X (1), . . . ,X (C)] having p=∑ pc

columns.

2.3 Multiblock-PLS (mbPLS)

The association between the response y and the blocks X=[X (1), . . . ,X (C)] is
assumed to be linear. Since we have to deal with a ‘small n large p’ situation together
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with a block structure, this can be handled with mbPLS. The main focus in this
algorithm is to seek scores for each block, s, which are used to generate combined
scores t Fig. 1 illustrate this connection. Here, we have adopted the mbPLS proce-
dure [10] with some modification, where each score s are also normalized by the
number of variables in each cluster. Algorithm starts with E0 = X = [X (1), . . . ,X (C)]
and f0 = y.

Algorithm 1
for r=1:R do

for c=1:C do

u(c)r =
(E(c)

r−1)
′ f r−1

‖(E(c)
r−1)

′ f r−1‖
s(c)r = E(c)

r−1u(c)r l(c) = number of columns of E(c)

end

Sr = [s(1)r /l(1)| . . . |s(C)
r /l(C)] wr =

(Sr)
′ f r−1

‖(Sr)′ f r−1‖
tr = Srwr pr = (t ′rtr)

−1E ′r−1tr qr =

(t ′rtr)
−1 f ′r−1tr Er = Er−1− tr p′r f r = f r−1− trqr Extract each block E(c)

r from Er

end

For prediction, model coefficients are stored; U (c)=[u(c)1 , . . . ,u(C)R ],
P=[p1, . . . , pR], Q=[q1, . . . ,qR] and W = [w1, . . . ,wR], and for test data
N = [N(1), . . . ,N(C)] which is scaled as X with ŷ=0 and E0 = N.

Algorithm 2
for r=1:R do

for c=1:C do
s(c)r = E(c)

r−1u(c)r

end

Sr = [s(1)r | . . .|s(C)
r ] tr = Srwr Er = Er−1−tr p′r ŷ= ŷ+trqr Extract each block E(c)

r from Er

end

2.4 Algorithm for Cluster Selection

Recently, we have suggested a stepwise estimation algorithm for parsimonious vari-
able selection [11], where stability based variable selection procedure is adopted,
and data have been split randomly in a predefined number of subsets (test and train-
ing). For each split, a stepwise procedure is adopted to select the variables. Stable
variables that are being selected by stepwise elimination from all split of the data
are selected finally. This algorithm was also implemented here, but feature selec-
tion was performed on clusters of variables instead of individual variables, where
the ‘worst’ clusters were iteratively eliminated using a greedy algorithm. The algo-
rithm requires a ranking of the blocks in X . For this, block importance on prediction
(BIP) [18] is utilized and defined as
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BIP(c) =

√

C
R

∑
r=1

cov2(y, tr)w
(c)2

r /
R

∑
r=1

cov2(y, tr)

where w(c)2

r are the loading weights for cluster c, cov means covariance, C is the
number of clusters and is included in above relation so that ∑C

c=1(BIP(c))2 = 1. The
BIP weights the contribution of each cluster according to the variance explained
by each PLS component. Cluster c can be eliminated, if BIPc < a for some user-
defined threshold a∈ [0,∞). Defining a is a critical issue, here we have modified the
stepwise algorithm [11] for cluster selection.

The stepwise elimination algorithm can be sketched as follows: Let Z0 =
X = [X1, . . . ,XC].

1. For iteration g run y and Zg through cross validated mbPLS. The matrix Zg has
pg clusters, and we get the same number of criterion values, sorted in ascending
order as BIP(1), . . . ,BIP(Cg).

2. There are M criterion values below the cutoff a. If M = 0, terminate the elimi-
nation here.

3. Else, let N = �bM� for some fraction b ∈ 〈0,1]. Eliminate the clusters corre-
sponding to the N most extreme criterion values.

4. If there are still more than one cluster left, let Zg+1 contain these clusters, and
return to 1.

The fraction b determines the ‘steplength’ of the elimination algorithm, where
an b close to ‘0’ will only eliminate a few cluster in every iteration. An overview of
block elimination is given in Fig. 2. The fraction b and threshold a can be obtained
through cross validation.

From each iteration g of the elimination, we get a root mean square error (RMSE)
and is denoted by Lg. RMSE value closer to ‘0’ indicates satisfactory prediction
ability. The number of influencing clusters decreases at each iteration, and Lg will
often decrease until some optimum is achieved, and then increase again as we keep
on eliminating. A potentially much simpler model can be achieved by a relatively
small sacrifice of optimum RMSE [11]. This means we need a rejection level m,
where for each iteration beyond optimum RMSE L∗ we can compute the t-test
p-value, to give a perspective on the trade-off between understandability of the
model and RMSE.

2.4.1 The Split of Data into Test and Training and Parameter Tuning

We fixed a at the extreme value 10 and considered three levels of step length
b = (0.1,0.5,1). In the first regularization step, we tried different rejection levels
(m = (0.90,0.99)). For accurate model estimation, the data was split at three lev-
els. Figure 3 gives a graphical overview. At level 1, we split the data into a test set
containing 25% of the genomes and a training set containing the remaining 75%.
This split was repeated 30 times, each time sampling the test set at random, i.e. the
30 test (and training) sets were partially overlapping. In each of the 30 instances,
selected clusters were used for classifying the level 1 test set, and the RMSE on
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prediction (RMSEP) was computed. Inside the stepwise elimination, there are two
levels of cross-validation as indicated by the right part of Fig. 3. First, a ten-fold
cross-validation was used to optimize the fraction b and the rejection level b in the
elimination part of the algorithm. At the final level, leave-one-out cross-validation
was used to estimate all parameters in the mbPLS method. These two procedures
together corresponds to a ‘cross-model validation’ [11].
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Fig. 4: The number of clusters obtained with the different thresholds on d are pre-
sented in left panel. The number of clusters decreases with the increase of threshold
on ‘d’Ṫhe right panel shows the size distribution of the clusters using the smallest
threshold d= 0.02

3 Results and Discussion

For codon and di-codons clusters identification which influence the variation in op-
timal growth temperature of Actinobacteria, we have first clustered these variables
based on their correlation. Figure 4, left panel presents the number of clusters ob-
tained with the different correlation thresholds d. The number of clusters decreases
with the increase of threshold on d. For the clusters to be meaningful variables
inside each cluster need to be highly correlated [20]; hence we have selected the
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Fig. 5: The distribution of RMSE for a full model, optimum model and selected
model on training data are displayed in the upper left panel, and RMSEP on test
data in the lower left panel. In the upper right panel the number of selected clusters
and in lower right panel the number of components from our selected model are
compared with the optimum model

strict threshold d = 0.02. These clusters are consisting of highly correlated vari-
ables only and gives the maximum number of clusters. The distribution of cluster
sizes is presented in the right panel of Fig. 4, indicating that most clusters are small
(two members).

In suggested algorithm for cluster selection, it is possible to have results from the
full model, the optimum model (smallest possible RMSE) and the selected model.
The selected model allows for a small increase in RMSE to achieve a huge reduction
in number of selected clusters. In Fig. 5 in the upper left panel, the distribution of
RMSE for the full, optimum and selected model on training data is displayed.
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Fig. 6: The selectivity score is sorted in descending order for the optimum model in
upper panel and for the selected model in lower panel. There are 1,656 cluster each
having selectivity score, here only the first 100 values (out of 1,656) are shown

Training data indicates that, by elimination of some ‘noice’ clusters, we get de-
creased RMSE by going from the full model to the optimum model. Selected model
has slightly poorer RMSE compared to the optimum model, which is a sacrifice we
are willing to make in order to achieve the improved understandability of a reduced
model. The upper right panel of Fig. 5 indicates the number of selected clusters for
the optimum and selected model. On test data, we get more variation in RMSEP, as
presented in the lower left panel of the Fig. 5, but the trend is same. Furthermore, we
find the selected and optimum models are very simple in the sense that most of the
models used only one/two components, as presented in lower right panel of Fig. 5.

Stability and selectivity of selected clusters is an important factor for any mul-
tivariate analysis, so the cluster selection on the bases of stability can bring better
interpretation [6]. To evaluate model stability and selectivity, we recently introduced
a simple selectivity score [11]: if a cluster is selected as one out of C cluster, it will
get a score of 1/C. Repeating the selection for each split of the data, we simply
add up the scores for each cluster. Thus, a cluster having a large selectivity score
tend to be repeatedly selected as one among a few clusters. In Fig. 6, the selectivity
score is sorted in descending order and is presented for optimum model in upper left
panel and for selected model in the lower panel. The selected model indeed found
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some stable cluster of codon and di-codon selection for explaining the variability
in growth temperature of Actinobacteria prokaryote genomes and is a fundamental
requirement for any further analysis. To fulfill this requirement, we need to have a
rough idea of the ‘null-distribution’ of this selectivity score, for this we ran the se-
lection on data where the response y was permuted at random. From this, the upper
0.1% of the null-distribution is determined, which approximately corresponds to the
selectivity score above 0.5 for clusters. Out of 1,656 clusters, this procedure finally
selects less than 20 stable clusters.

4 Conclusion

We have generalized variable selection procedure for the cluster of correlated vari-
ables selection through a stepwise backward block elimination procedure in mbPLS.
The derived results give the better interpretation of modeled biological relation by
selecting small number of stable clusters, where correlated variables are connected.
Further selected cluster tends to contain small number of variables.
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PLS Regression and Hybrid Methods
in Genomics Association Studies

Antonio Ciampi, Lin Yang, Aurélie Labbe, and Chantal Mérette

Abstract Using data from a case-control study on schizophrenia, we demonstrate
the use of PLS regression in constructing predictors of a phenotype from Single
Nucleotide Polymorphisms (SNPs). We consider straightforward application of PLS
regression as well as two hybrid methods, in which PLS regression scores are used
as input for a tree-growing algorithm and a clustering algorithm respectively. We
compare these approaches with other classic predictors used in statistical learning,
showing that our PLS-based hybrid methods outperform both classic predictors and
straightforward PLS regression.

Key words: PLS Regression, Bagging, SNP, GWAS

1 Introduction

Genome-wide association studies (GWAS) have raised great hopes. It is now pos-
sible to determine the value of virtually every Single Value Polymorphism (SNP)
of a subject in a reasonable time frame and at rapidly decreasing costs. It is also
possible to scan the whole genome of a fairly large number of subjects and assess
the impact of each SNP on a particular phenotype, such as ‘presence of a disease.’
The remarkable advances that have made this possible should have empowered
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scientists to obtain a deep understanding of the genetic causes of human diseases.
Unfortunately this understanding remains elusive. Much has been written on the
problem of “missing heritability,” (i.e., the failure to find strong evidence at the
genome level of well known patterns of disease transmission within families [1, 2]).
Various complex hypotheses have been advanced to explain the paradox (see, e.g.,
[3, 4]), however none of these hypotheses has been universally accepted within the
scientific community [5].

Less attention is paid to the fact that GWAS studies often use only univariate tests
to identify associations between SNPs and phenotypes such as common diseases. In
contrast, biology suggests that genes often cause common diseases through complex
pathways, which should be studied with multivariate statistical models including
both linear effects and interactions. Yet, there exist powerful but rarely-used meth-
ods originating from the statistical learning literature [6, 7] that may assist in identi-
fying multi-SNP relationships and gaining understanding of SNP-trait associations.

This work originates from an attempt to identify genetic variants associated to
schizophrenia from data collected in a case-control study. The data consisted of 237
cases and 132 controls. Preliminary univariate analyses had identified a number of
candidate regions of the genome and 41 Single Nucleotide Polymorphisms (SNPs)
belonging to these regions, covering 7 chromosomes. SNPs on the same chromo-
some were found to be correlated, but some correlations between SNPs on different
chromosomes were also detected. Our goal was to construct a parsimonious predic-
tive model for schizophrenia using the 41 SNPs which were found ‘significant’ in
univariate analyses, or an appropriately selected subset of these.

In view of the correlations among SNPs, PLS regression appeared to be a method
of choice for building such a model. At the same time, it seemed interesting to
compare PLS regression with other ‘classical’ methods of data analysis and with
methods from the statistical learning literature. The choice is vast, but we chose
to limit ourselves to the most popular ones. Since PLS is a linear method, i.e. not
naturally designed to detect interactions among predictors, we decided to include
approaches that are designed to detect interactions. Moreover, in view of the unique
features of each technique, we also decided to ‘mix and match’ various approaches,
developing what might be seen as two novel hybrid methods.

The next section lists and briefly describes the methods we have used. Section 2
describes our approach for evaluating and comparing methods. Section 3 describes
the results of our comparisons. Finally in Sect. 5 we draw some tentative conclusions
and discuss ideas for future research.

2 Constructing Predictors from Data

We distinguish here between (generalized) linear and non-linear prediction methods
for constructing predictors. Linear methods are known to be more stable and robust
than non-linear methods; on the other hand non-linear methods may provide unique
insight into a data set, revealing non-linear relationships and complex interactions,
which a linear method would not uncover.
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2.1 (Generalized) Linear Prediction

The linear prediction is at the intersection of “classical” and “statistical learning”
methodology. Classical theory offers a solid theoretical justification for linear meth-
ods, given a vector of predictors. However, the choice of the predictors out of a
potentially large pool can be seen as a task of statistical learning. Prediction of a bi-
nary variable, the focus of this work, can be based on logistic regression and Fisher’s
canonical discriminant analysis (CANDISC [6]). Given a binary outcome variable
Y and a number of predictors X1, X2, . . ., Xk. the logistic regression model has the
(generalized) linear form:

log(
p

1− p
) = β0 +β1X1 +β2X2 + . . .+βkXk, (1)

where p is the probability that Y = 1 and X1, X2, . . ., Xk are the independent vari-
ables (predictors). The β ’s are known as the regression coefficients, which have to
be estimated from the data, usually by likelihood maximization. Variable selection
methods are numerous: we have chosen the computationally light approaches based
on the AIC and BIC criteria [6]).

Fisher’s CANDISC is equivalent to canonical correlation analysis between the
predictor variables and a set of K class indicator variables, where K is the number
of classes (K = 2 here). CANDISC derives a linear combination of the predictor
variables that has the highest possible correlation with the class indicator variables.
This maximum correlation is called the first canonical correlation. The coefficients
of the linear combinations are the canonical coefficients. The variable defined by the
linear combination is the first canonical variable. The second canonical correlation
is obtained by finding the linear combination uncorrelated with the first canonical
variable that has the highest possible multiple correlation with the groups. The pro-
cess of extracting canonical variables can be repeated until the number of canonical
variables equals the number of original variables or the number of classes minus one,
whichever is smaller. Canonical variables are also called canonical components. For
K = 1 CANDISC provides a 2-dimensional representation of the data, which gives
a very useful visualization: if subjects belonging to different classes are represented
by points of different color, one can easily see to what extent the canonical variables
are able to separate the classes.

Partial Least Square (PLS) regression was developed to handle data sets with a
large number P of correlated predictor variables, including the case P� N (with
N denoting the sample size). It can be seen as an alternative to variable selection.
No variable is excluded from a PLS model, but variables are weighted differently,
in such a way that unimportant variables receive very small weights. PLS regres-
sion is not likelihood based, but is close to CANDISC in that it is based on purely
geometric ideas. The goal is to successively find PLS components, i.e. mutually or-
thogonal linear combinations of the predictor variables that maximize the product
of the correlation of the predictor variables with the outcome and of the variance of
the linear combination itself. PLS regression has also features that permit to discard
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some of the PLS components, so that an effective dimension reduction is achieved.
Usually this step is carried out through cross-validation. It should be noted that PLS
regression has been shown to be similar to other forms of shrinking and dimension
reduction, such as ridge regression (RR) and principal component regression (PCR,
[]). Guided by this, by now, classical result, we have worked with PLS regression
but have not included RR and PCR regression in the methods used in this paper.

2.2 Non-linear Prediction

We have limited ourselves to prediction trees and some methods that are built on
prediction trees, known as ensemble methods as they combine predictors obtained
from several subsets of the data. The approach to tree-growing used in this work
is essentially the classical CART developed by Breiman et al. [8]. The technique
is aimed at finding a rule which could predict the value of a dependent variable Y
from known values of P explanatory variables Xp , p = 1, . . . ,P (predictors). CART
builds trees and formulates simple if/then rules for recursive partitioning (splitting)
of all the observations into smaller subgroups. Each such step may give rise to new
“branches.” The goal of this process is to maximize homogeneity of the values of the
dependent variable Y in the various subgroups. It implies that CART does not stop
splitting until terminal nodes contain observations only of one class. Maximum trees
may turn out to be of very high complexity and consist of many levels. Therefore,
they have to be optimized to solve this problem. Tree optimization implies choosing
the right size of tree-cutting off insignificant nodes and even subtrees. Two strate-
gies can be used in practice: optimization by setting a minimum sample size of each
terminal node and cross-validation based on optimal proportion between the com-
plexity of the tree and misclassification error. In our study, the latter strategy was
applied to find the optimal size of the pruned classification tree.

Bootstrap aggregating, shortened as bagging [8], is a method of averaging the
predictions obtained by many decision trees over a collection of bootstrap sam-
ples, thereby reducing its variance to avoid over-fitting. Bagging consists of build-
ing a simple classifier using successively different bootstrap samples. In bagging,
the bootstrap samples are based on the unweighted bootstrap and majority voting
makes the predictions.

Boosting is a popular machine learning method for transforming a collection of
weak classifiers or trees into one strong classifier in order to improve the accuracy of
any given learning algorithm. It reduces over-fitting by weighting each classifier’s
contribution to the final fit. In boosting, the bootstrap samples are built iteratively
using weights that depend on the predictions made in the last iteration. There are
many Boosting algorithms differing in details. The AdaBoost algorithm, short for
Adaptive Boosting (see [9] for a description) was used in this work.

Random Forest (introduced by Breiman [10]), use recursive partitioning to gener-
ate many trees and then aggregate the results. Each tree is independently constructed
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using a bootstrap sample of the data. The algorithm produces, in addition to
predictionfor new data, measures of importance (in determining the prediction) for
each variable.

2.3 Two Hybrid Methods

With the aim to combine the complementary features of linear and non linear meth-
ods, we briefly describe here two hybrid approaches based on PLS regression and
trees. PLS regression identifies a subspace L of the predictor space of reduced di-
mension m, which contains (most of) the useful predictive information. This sub-
space is spanned by the first M PLS components: PLS1, PLS2, . . ., PLSM . Prediction
is then based on a linear function of these PLS components. To capture non-linear
predictive information, we could attempt to search for a model of the form:

log

(
p

1− p

)
= g1(PLS1)+ g2(PLS2)+ . . .+ gm(PLSM), (2)

where the g’s are non-linear functions to be determined from the data. There are
many possible choices. Here we limit ourselves to indicator functions of subsets
of L.

Specifically, we present here two approaches:

(A) PLS + Prediction trees: Construct a prediction tree using the first m PLS com-
ponents as predictors. This indicator functions are those associated to the leaves
of the tree. A variant of this approach includes also the original SNPs variables
in the tree construction.

(B) PLS + Clustering: Construct a partition of L using a clustering algorithm (e.g.
K-means). The indicator functions are those associated to the sets of the parti-
tion.

It should be noted that both approaches are heavily data dependent. Data de-
termine both the shape and the size of the tree; similarly, data determine both the
definition and the size of the partition obtained through a clustering algorithm. If we
wish to compare these two approaches with each other and with other ones, some
careful cross-validation is needed.

3 Comparing Predictors

To compare the various predictors constructed from the data, we have used here
three evaluation measures: the misclassification error, the Brier score and the
C-statistics. The Brier’s score [11] measures the distances between true and pre-
dicted binary outcome for a particular test set. So a lower Brier score represents
higher accuracy of a predictive model. For binary outcomes, the C-statistic (C for
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concordance [12]), is defined, as the fraction of all pairs of subjects with predictions
concordant with outcomes (Prediction and outcome are concordant for a pair of
subjects if they have either the same observed and predicted outcome or different
observed and predicted outcome). It can be shown that the C-statistic is identical to
the area under the receiver operating characteristic (ROC) curve [13].

For a given predictor, these measures can be calculated on the same sample on
which the predictor has been constructed: this is known as re-substitution. As is
well known, however, re-substitution measures yield over-optimistic evaluations of
predictors. Moreover, the comparison among different predictors cannot be trusted,
since the methods to build them vary broadly in the amount of data dependence:
For instance, a PLS predictor uses the data only to estimate the parameters of the
underlying model, while a prediction tree is built by a very intensive search at each
node. Therefore, to obtain fairer comparisons, we have adopted the same cross-
validation approach as described in [8]. We proceeded as follows:

(i) From the original sample, we left out a random 10% of the subjects;
(ii) We constructed the predictors on the remaining 90% (learning sample) and

then used the left-out 10% (test set) to calculate the evaluation measures;
(iii) The procedure was repeated 100 times and the cross-validated evaluation mea-

sures were calculated as the average over all misclassification errors thus ob-
tained.
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Fig. 1: PLSR coefficients
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Fig. 2: The first two dimensions of the PLSR separating disease and non-disease
groups

4 Results

We summarize the results obtained by applying 12 data analytic approaches on the
schizophrenia data set in Table 1. These include CANDISC, four variants of logis-
tic regression, PLS regression, three tree-based ensemble methods and two hybrid
approaches (PLS + tree-growing, and PLS + K-means clustering).

For each predictor we calculated the re-substitution error rate, the cross-validated
error, as well as the cross-validated Brier score and C-statistic.

The first column of the table contains the re-substitution error, and is interesting
for illustrative purposes. As it could be expected, the re-substitution error is over-
optimistic and favors models with a greater number of parameters and/or of higher
complexity, e.g. we obtain 0 errors with Bagging and Boosting, and the smallest
non-zero error with CANDISC and logistic regression including all 41 SNPs. The
second column, containing the cross-validated error, tells a very different story: it
shows that our two hybrid methods outperform all others; also, PLS regression out-
performs the classical methods. The other two evaluation measures shown in the
third and fourth column are essentially in agreement with the cross-validated error
in ranking predictors.
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Fig. 3: Pruned classification tree

The two hybrid approaches give the best results, followed by PLS regression
(with cross-validation to select the number of components). The performance of the
Random forest is comparable with that of PLS, while the other tree-based ensemble
methods perform worse than logistic regression.

The data are confidential; therefore we cannot disclose details leading to the iden-
tification of specific SNPs. However, Fig. 1 shows the impact of certain SNPs on
prediction, as well as the fact that some SNPs are associated to risk and other to
protection. Since the SNPs are numbered in an order that corresponds to their co-
ordinates on the genome, it is also apparent that there are spatial patterns in the
associations.

Figure 2 shows the discrimination between cases and controls obtained with the
first two PLS components. The K-means algorithm simply identifies clusters in this
plane, making the prediction sharper (data not shown because of space limitation).
Finally in Fig. 3 we show the tree based on both SNPs and the PLS components.
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Table 1: Comparison of predictors

Model Resubstitution
error rate

CV-error Brier
score

C-statistic

CANDISC 0.184 0.389 0.291 0.671
Logistic linear model with 41 SNPs 0.184 0.257 0.181 0.807
Logistic linear model with 21 SNPs (AIC) 0.201 0.238 0.169 0.825
Logistic linear model with 15 SNPs (BIC) 0.219 0.256 0.175 0.810
Logistic linear model with first three PCs 0.260 0.271 0.186 0.766
Pruned Tree with only 41SNPs 0.230 0.363 0.327 0.615
PLS regression model with two PLS Comps 0.205 0.232 0.165 0.826
Pruned Tree with 41 SNPs and 2 PLS Comps 0.189 0.210 0.163 0.836
K-means ( nine clusters) with two PLS
Comps

0.208 0.209 0.149 0.847

Random forest 0.244 0.239 0.177 0.801
Bagging 0 0.262 0.181 0.784
AdaBoosting 0 0.252 0.179 0.783

5 Conclusion

The superiority of PLS regression over the classical methods is not surprising, since
it was designed for this type of situations: a large (relative to sample size) number of
correlated predictors. More interesting is its superiority over the statistical learning
methods (when cross-validation was properly used). This may be interpreted as ev-
idence that highly correlated predictors, appropriately handled by PLS regression,
may cause problems even for sophisticated learning approaches. On the other hand,
the superiority of our hybrid methods may be due to the integration of the advan-
tages of PLS regression and statistical learning methods. At least in this situation,
the capability of handling correlation which distinguishes PLS regression, combines
well with be ability to handle non-linear relationships (e.g., interactions in the case
of trees) which characterized statistical learning methods. Therefore it seems useful
to further explore hybrid methods. We plan to do so by analyzing a variety of real
data sets and planning appropriate simulation studies.
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Abstract Partial least squares (PLS) regression combines dimensionality reduction
and prediction using a latent variable model. It provides better predictive ability
than principal component analysis by taking into account both the independent and
response variables in the dimension reduction procedure. However, PLS suffers
from over-fitting problems for few samples but many variables. We formulate a new
criterion for sparse PLS by adding a structured sparsity constraint to the global SIM-
PLS optimization. The constraint is a sparsity-inducing norm, which is useful for se-
lecting the important variables shared among all the components. The optimization
is solved by an augmented Lagrangian method to obtain the PLS components and to
perform variable selection simultaneously. We propose a novel greedy algorithm to
overcome the computation difficulties. Experiments demonstrate that our approach
to PLS regression attains better performance with fewer selected predictors.
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1 Introduction

Partial least squares (PLS) regression combines dimensionality reduction and pre-
diction using a latent variable model. It was first developed for regression analysis in
chemometrics [5, 6, 8, 9, 11, 15, 17–19], and has been successfully applied to many
different areas, including sensory science and more recently genetics. Since PLS-R
does not require matrix inversion or diagonalization, it can be applied to problems
with large numbers of variables. As predictor dimension increases, variable selec-
tion becomes essential to avoid over-fitting, to provide more accurate predictors and
to yield more interpretable parameters. For this reason sparse PLS was developed by
H. Chun and S. Keles [10]. The sparse PLS algorithm performs variable selection
and dimension reduction simultaneously using an L1 type variable selection penalty.
However, the L1 penalty used in [10] penalizes each variable independently and this
can result in different sets of variables being selected for each PLS component lead-
ing to an excessively large number of variables. In this paper we propose a global
variable selection approach that penalizes the total number of variables across all
PLS components. Put another way, the proposed global penalty guarantees that the
selected variables are shared among the PLS components. This results in improved
PLS performance with fewer variables. We formulate PLS with global sparsity as
a variational optimization problem with objective function equal to the univariate
PLS criterion with added mixed norm sparsity constraint on the weight matrix. The
mixed norm sparsity penalty is the L1 norm of the L2 norm on the subsets of vari-
ables used by each PLS component. A novel augmented Lagrangian method is pro-
posed to solve the optimization problem and soft thresholding for sparsity occurs
naturally as part of the iterative solution. Experiment results show that the modified
PLS attains better performance (lower mean squared error, MSE) with many fewer
selected predictor variables.

2 Partial Least Squares Regression

Partial Least Squares (PLS) methods embrace a suite of data analysis techniques
based on algorithms belonging to the PLS family. These algorithms consist of var-
ious extensions of the Nonlinear estimation by Iterative PArtial Least Squares (NI-
PALS) algorithm that was proposed by Herman Wold [2] as an alternative algo-
rithm for implementing a Principal Component Analysis (PCA) [3]. The NIPALS
approach was slightly modified by Herman Wold son, Svante, and Harald Martens,
in order to obtain a regularized component based regression tool, known as PLS
Regression (PLS-R) [4, 9].

Suppose that the data consists of n samples of independent variables X ∈ Rn×p

and dependent variables (responses) Y ∈ Rn×q. In standard PLS Regression the aim
is to define orthogonal latent components in Rp, and then use such latent compo-
nents as predictors for Y in an ordinary least squares framework.The X weights
used to compute the latent components can be specified by using iterative algo-
rithms belonging to the NIPALS family or by a sequence of eigen-decompositions.
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Moreover, in the univariate response case, it does not make sense to calculate
components in the unidimensional response space. For the k-th component, the X
weights can be directly computed as a function of Y . In particular, for the first com-
ponent the X weights are defined such that the covariance between the predictors
and the univariate response is maximized. In both the univariate and multivariate
cases, the general underlying model behind the PLS Regression is X = TPT +E
and Y = T QT +F, where T is the latent component matrix, P and Q are the loading
matrices, E and F are the residual terms.

2.1 Univariate Response

We assume, without loss of generality, that all the variables have been centered
in a pre-processing step. For univariate Y , i.e q = 1, PLS Regression, also often
denoted as PLS1, successively finds X weights R = [ r1 r2 . . . rK ] as the solution to
the constrained optimization

rk = argmax
r
{rT XT

(k−1)Yk−1Y T
k−1X(k−1)r}s.t. rT r = 1 (1)

where X(k−1) is the matrix of the residuals (i.e. the deflated matrix) from the regres-
sion of the X-variables on the first k− 1 latent components, and X0 = X . Due to the
deflation on data after each iteration for finding the weight vector rk, the orthogo-
nality constraint is satisfied by construction. These weights are then used to find the
orthogonal latent components T = X(k−1)R. Such components can be also expressed
in terms of original variables (instead of deflated variables), i.e. as T = XW , where
W is the matrix containing the weights to be applied to the original variables in order
to exactly obtain the latent components [13].

For a fixed number of components, the response variable Y is predicted in an
ordinary least squares regression model where the latent components play the role
of the exogenous variables

argmin
Q
{||Y −TQT ||2}= (T T T )−1T TY (2)

This provides the regression coefficients β̂ PLS =WQ̂T for the modelY =Xβ PLS+F .
Depending on the number of selected latent components the length ‖β̂ PLS‖2 of

the vector of the PLS coefficient estimators changes. In particular, de Jong [1] has
shown that the sequence of these coefficient vectors have lengths that are strictly
increasing as the number of component increases. This sequence converges to the
ordinary least squares coefficient vector and the maximum number of latent compo-
nents obtainable equals the rank of the X matrix. Thus, by using a number of latent
components K < rank(X), PLS-R performs a dimension reduction by shrinking the
β vector. Hence, PLS-R is a suitable tool for problems with data containing many
more variables p than observations n.

The objective function in (1) can be interpreted as maximizing the squared
covariance between Y and the latent component: corr2(Y,Xk−1rk)var(Xk−1rk). Be-
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cause the response Y has been taken into account to formulate the latent matrix,
PLS has better performance in prediction problems than principle component
analysis(PCA) does [20]. This is one of the main difference between PLS and
principle component analysis (PCA) [14].

2.2 Multivariate Response

Similarly to univariate response PLS-R, multivariate response PLS-R selects latent
components in Rp and Rq, i.e. tk and vk, such that the covariance between tk and vk

is maximized. For a specific component, the sets of weights rk ∈ Rp and ck ∈ Rq are
obtained by solving

max{tT v}= max{rT XT
k−1Yk−1c}s.t. rT r = cT c = 1 (3)

where tk = X(k−1)rk, vk = Y(k−1)ck, and X(k−1) and Y(k−1) are the deflated matrices
associated to X and Y . Notice that the optimal solution ck should be proportional to
Y T

k−1Xk−1rk. Therefore, the optimization in (3) is equivalent to

max
r
{rT XT

k−1Yk−1Y T
k−1Xk−1r}s.t. rT r = 1 (4)

For each component, the solution to this criterion can be obtained by using a so
called PLS2 algorithm. A detailed description of the iterative algorithm as presented
by Höskuldsson is in Algorithm 3 [7].

Algorithm 3 PLS2 algorithm

for k=1:K do
initialize r X = Xnew Y =Ynew while solution has not converged do

t = Xr c = Y T t Scale c to length 1 v = Y c r = XT v Scale r to length 1
end
loading vector p = XT t/(tT t) deflate Xnew = X − tpT regression b =
Y T t/(tT t) deflate Ynew =Y − tbT rk = r

end

In 1993 de Jong proposed a variant of the PLS2 algorithm, called Straightforward
Implementation of a statistically inspired Modification of PLS (SIMPLS), which
calculates the PLS latent components directly as linear combinations of the original
variables [12]. The SIMPLS was first developed as an optimality problem and solve
the optimization

wk = argmax
w

(wT XTYY T Xw)

s.t. wT w = 1, wT XT Xw j = 0 f or j = 1, . . .,k− 1. (5)

Ter Braak and de Jong [21] provided a detailed comparison between the objective
functions for PLS2 in (4) and SIMPLS in (5) and shown that the successive weight
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vectors wk can be derived either from the deflated data matrices or original variables
in PLS2 and SIMPLS respectively. Let W+ be the Moore-Penrose inverse of W =
[w1 w2 . . . wk−1]. The PLS2 algorithm (Algorithm 3) is equivalent to solving the
optimization

wk = argmax
w

(wT XTYY T Xw)

s.t.wT (I−WW+)w = 1,wT XT Xwi = 0 f or i = 1, . . .,k− 1. (6)

Both NIPALS and SIMPLS have the same objective function but each are maxi-
mized under different constraints. NIPALS and SIMPLS are equivalent when Y is
univariate, but provide slightly different weight vectors in multivariate scenarios.
The performance depends on the nature of the data, but SIMPLS appears easier to
interpret since it does not involve deflation of the data sets [12]. However NIPALS
can manage missing data when SIMPLS needs complete data. We develop our glob-
ally sparse PLS based on the SIMPLS optimization formulation.

3 Globally Sparse PLS Regression

One approach to sparse PLS is to add the L1 norm of the weight vector, a sparsity
inducing penalty, to (5). The solution for the first component would be obtained by
solving

w1 = argmax
w

(wT XTYY T Xw) s.t. wT w = 1, ||w||1 ≤ λ . (7)

The addition of the L1 norm is similar to SCOTLASS (simplified component lasso
technique), the sparse PCA proposed by Jolliffe [16]. However, the solution of
SCOTLASS is not sufficiently sparse, and the same issue remains in (7). Chun and
Keles [10] reformulated the problem, promoting the exact zero property by impos-
ing the L1 penalty on a surrogate of the weight vector instead of the original weight
vector [10], as shown in (8). For the first component, they solve the following opti-
mization by alternating between updating w and z (block coordinate descent). The
L2 norm addresses the potential singularity problem when solving for z.

w1,z1=argmin
w,z

{−κwT XTYY T Xw + (1−κ)(z−w)T XTYY T X(z−w)+λ1||z||1+λ2||z||22}

s.t. wT w = 1 (8)

As mentioned in the Introduction, this formulation penalizes the variables in each
PLS component independently. This paper proposes an alternative in which vari-
ables are penalized simultaneously over all directions. First, we define the global
weight matrix, consisting of the K weight vectors, as
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W =

⎡

⎣
|

w1

|

|
w2

|
· · ·

|
wK

|

⎤

⎦=

⎡

⎢
⎢⎢
⎢
⎣

− wT
(1) −

− wT
(2) −
...

− wT
(p) −

⎤

⎥
⎥⎥
⎥
⎦

Notice that the elements in a particular row of W, i.e. wT
( j), are all associated with the

same predictor variable x j. Therefore, rows of zeros correspond to variables that are
not selected. To illustrate the drawbacks of penalizing each variable independently,
as in [10], suppose that each entry in W is selected independently with probability
p1. The probability that the ( j)th variable is not selected becomes (1− p1)

K , and
the probability that all the variables are selected for at least one weight vector is
[1− (1− p1)

K ]p, which increases as the number of weight vectors K increases. This
suggests that for large K the local variable selection approach of [10] may not lead
to an overall sparse and parsimonious PLS model. In such cases a group sparsity
constraint is necessary to limit the number of selected variables. The globally sparse
PLS variable selection problem is to find the top K weight vectors that best relate X
to Y, while using limited number of variables.

W = argmin
W
− 1

n2

K

∑
k=1

wT
k XTYY T Xwk +λ

p

∑
j=1

||w( j)||2 (9)

s.t. wT
k wk = 1 ∀ k and wT

k XT Xwi = 0 ∀ i �= k

The objective function (9) is the summation of the first K terms in the SIMPLS
objective. Instead of the sequential greedy solution in PLS2 algorithm, the proposed
globally sparse PLS must solve for the K weight vectors simultaneously. The L2

norm of each row of W promotes grouping entries in W that relate to the same pre-
dictor variable, whereas the L1 norm promotes a small number of groups, as in (7).

We propose to solve the optimization (9) by augmented Lagrangian methods,
which allows one to solve (9) by variable splitting iterations. Augmented Lagrangian
methods introduce a new variable M, constrained such that M = W , such that the
row vectors m( j) of M obey the same structural pattern as the rows of W :

min
W,M
− 1

n2

K

∑
k=1

wT
k XTYY T Xwk +λ

p

∑
j=1

||m( j)||2 (10)

s.t. wT
k wk = 1 ∀ k , wT

k XT Xwi = 0 ∀ i �= k, and M =W

The optimization (10) can be solved by replacing the constrained problem by an un-
constrained one with an additional penalty on the Frobenius norm of the difference
M−W . This penalized optimization can be iteratively solved by a block coordinate
descent method that alternates between optimizing over W and over M (See Algo-
rithm 4). We initialize the Algorithm 4 with M(0) equals to the solution of standard
PLS, and D(0) equals to the zero matrix. Once the algorithm converges, the final
PLS regression coefficients are obtained by applying the standard PLS regression
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on the selected variables keeping the same number of components K. The optimiza-
tion over W can be further simplified to a secular equation problem, whereas the
optimization over M can be shown to reduce to solving a soft thresholding opera-
tion. As described later in the experimental comparisons section, the parameters λ
and K are decided by cross validation.

Algorithm 4 Exact solution of the global PLS variable selection problem using the
augmented Lagrangian method

set τ = 0, choose μ > 0, M(0), W (0), D(0) while stopping criterion is not satisfied
do

W (τ + 1) = argmin
W
− 1

n2

K
∑

k=1
wT

k XTYY T Xwk +
μ
2 ||W −M(τ)−D(τ)||2F

s.t. wT
k wk = 1 ∀k, wT

k XT Xwi = 0 ∀ i �= k M(τ + 1) =

argmin
M

λ
p
∑
j=1
||m( j)||2+ μ

2 ||W (τ + 1) − M − D(τ)||2F D(τ + 1) = D(τ) −
W (τ + 1)+M(τ + 1)

end

4 Experimental Comparisons

In this section we show experimental results obtained by comparing standard PLS-
R, L1 penalized PLS-R [10], our proposed globally sparse PLS-R, and Correlated
Component Regression [22]. All the methods have been applied on the Octane data
set (see [13]). The Octane data is a real data set consisting of 39 gasoline samples
for which the digitized Octane spectra have been recorded at 225 wavelengths (in
nm). The aim is to predict the Octane number, a key measurement of the physical
properties of gasoline, using the spectra as predictors. This is of major interest in real
applications, because the conventional procedure to calculate the Octane number is
time consuming and involves expensive and maintenance-intensive equipment as
well as skilled labor.

The experiments are composed of 150 trials. In each trial we randomly split
the 39 samples into 26 training samples and 13 test samples. The regularization
parameter λ and number of components K are selected by 2-fold cross validation
on the training set, while μ is fixed to 2,000. The averaged results over the 150 trials
are shown in Table 1. All the methods but CCR perform reasonably in terms of
MSE on the test set. We further show the variable selection frequencies for the first
three PLS methods over the 150 trials superimposed on the octane data in Fig. 1. In
chemometrics, the rule of thumb is to look for variables that have large amplitudes
in first derivatives with respect to wavelength. Notice that both L1 penalized PLS-R
and globally sparse PLS have selected variables around 1,200 and 1,350 nm, and
the selected region in the latter case is more confined. Box and Whisker plots for
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comparing the MSE, number of selected variables, and number of components of
these three PLS formulations are shown in Fig. 2. Comparing our proposed globally
sparse PLS with standard PLS and L1 penalized PLS [10], we see that PLS with
global variable selection attains better performance in terms of MSE, the number of
predictors, and the number of components.

Table 1: Performance of the PLS with global variable selection compared with stan-
dard PLS and L1 penalized PLS

methods MSE number of var. number of comp.

PLS-R 0.0564 225 5.5

L1 penalized PLS-R 0.0509 87.3 4.5

globally sparse PLS-R 0.0481 38.5 3.8

CCR 0.8284 19.1 6

5 Conclusion

The formulation of the SIMPLS objective function with an added group sparsity
penalty greatly reduces the number of variables used to predict the response. This
suggests that when multiple components are desired, the variable selection tech-
nique should take into account the sparsity structure for the same variables among
all the components. Our proposed globally sparse PLS algorithm is able to achieve
as good or better performance with fewer predictor variables and fewer components
as compared to competing methods. It is useful for performing dimension reduc-
tion and variable selection simultaneously in applications with large dimensional
data but comparatively few samples (n < p). In future work, we will apply globally
sparse PLS algorithms to multivariate response datasets.
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Distance-Based Partial Least Squares Analysis

Anjali Krishnan, Nikolaus Kriegeskorte, and Hervé Abdi

Abstract Distances matrices are traditionally analyzed with statistical methods that
represent distances as maps such as Metric Multidimensional Scaling (MDS), Gen-
eralized Procrustes Analysis (GPA), Individual Differences Scaling (INDSCAL), and
DISTATIS. MDS analyzes only one distance matrix at a time while GPA, INDSCAL

and DISTATIS extract similarities between several distance matrices. However, none
of these methods is predictive. Partial Least Squares Regression (PLSR) predicts one
matrix from another, but does not analyze distance matrices. We introduce a new sta-
tistical method called DIStance-based Partial Least Squares Regression (DISPLSR),
which predicts one distance matrix from another. We illustrate DISPLSR with data
obtained from a neuroimaging experiment, which explored semantic categorization.

Key words: Partial least squares, Regression, Correlation, Distance, MDS,
DISTATIS

1 Introduction

Distance matrices are ubiquitous in the social sciences and several multivariate de-
scriptive methods have been developed to analyze them. Specifically, methods such
as metric multidimensional scaling (MDS), generalized Procrustes analysis (GPA),
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individual differences scaling (INDSCAL), and DISTATIS, all display distances as
points on a map. MDS transforms a distance matrix into a cross-product matrix (akin
to a variance-covariance matrix) in order to compute a suitable coordinate system
such that the original distances between elements are represented as accurately as
possible as Euclidean distances [1, 2]. GPA analyzes the similarities between more
than two distance matrices obtained on the same elements [3]. INDSCAL analyzes
multiple distance matrices that each store distances measured in the same observa-
tions [4]. DISTATIS analyzes multiple distance matrices simultaneously by comput-
ing an optimal compromise between all the distance matrices ([5–7]). While MDS

only analyzes one distance matrix at a time, and GPA, INDSCAL and DISTATIS ana-
lyze several distance matrices, none of these methods predicts one distance matrix
from another.

Partial Least Squares Regression (PLSR) predicts a set of dependent variables
(predictee) from a set of independent variables (predictor). PLSR belongs to the
family of PLS methods which also includes Partial Least Squares Correlation (PLSC)
(also called inter-battery-analysis [9], PLS-SVD [10, 11], inter-correlation analysis,
canonical covariance analysis, [12], robust canonical analysis [13], or co-inertia
analysis [14]), a correlation technique that analyzes associations between two ma-
trices. While PLSC has mostly been used in neuroimaging research [8], PLSR has
been applied in many fields such as Econometrics and Chemometrics [15–17]. The
basis for PLSC and PLSR is the singular value decomposition (SVD) of a matrix
[18–20]. PLSR requires an iterative application of the SVD, in order to find latent
variables that model the independent variables and simultaneously predict the de-
pendent variables. Each iteration of the SVD produces orthogonal (i.e., uncorrelated)
latent variables and corresponding regression weights for prediction. PLSR displays
the latent variables in the form of maps, which describe the relation between the
predictor and predictee.

There are a few methods that are related to PLSR and similar to DISPLSR. Sample-
based Partial Least Squares analysis (SAMPLS), developed for comparative molec-
ular field analysis [21], extracts latent variables from inter-sample distances (trans-
formed into covariances) to predict a single response variable. A variation of SAM-
PLS was later developed [22] with the modification that inter-sample distances were
calculated intrinsically (i.e., distances were calculated for each pair of elements
separately and then aggregated for the SAMPLS analysis). Distance-based Redun-
dancy Analysis (DB-RDA), developed for ecological research [23], combines MDS

and redundancy analysis (related to multiple linear regression with more than one
dependent variable) to predict a set of dependent variables from a distance ma-
trix. Multivariate Distance Matrix Regression (MDMR), developed for genomic re-
search [24], assesses the relationship between a distance matrix and non-distance
responses. This method was performed without using dimensional analysis and in-
stead defined a modified F statistic similar to the F statistic in ANOVA (i.e., the
ratio between explained and unexplained variance). Although SAMPLS, DB-RDA,
and MDMR are relevant methods to analyze distance matrices, they do not predict
one distance matrix from another.
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2 Methodology

In order to reduce the long computation time taken to iteratively derive latent vari-
ables in PLSR, a kernel PLSR algorithm was developed to condense large data matri-
ces before the PLSR step [25]. Kernel PLSR computes association matrices (akin to
variance-covariance matrices) for the predictor and predictee separately. The prod-
uct of these association matrices, called the kernel matrix, is used to compute the
latent variables for the PLSR step. While PLSR does not analyze distance matri-
ces, the structure of the association matrices in Kernel PLSR is comparable to the
cross-product matrix generated by MDS for distances. Therefore, the properties of
both Kernel PLSR and MDS were adapted to develop DIStance-based Partial Least
Squares Regression (DISPLSR) and DIStance-based Partial Least Squares Corre-
lation (DISPLSC). Both versions of DISPLS are discussed here with mathematical
details and illustrations.

2.1 Distance-Based Partial Least Squares Regression

The main algorithm for DISPLSR is derived from Kernel PLSR. All vectors in the
Kernel PLSR algorithm can be computed with the eigenvalue decomposition of ker-
nel matrices [26], which in turn are computed as the product of two association
matrices. For Kernel PLSR, the association matrix for an I×J matrix X is computed
as XXT (i.e., SX), and the association matrix for I×K matrix Y is computed as YYT

(i.e., SY). For DISPLSR, the data are in the form of distances: an I× I predictor dis-
tance matrix DX and an I× I predicted distance matrix DY. These distance matrices
are converted into cross-product matrices SX and SY. In order to convert a distance
matrix d into a cross-product matrix we first define a mass vector, whose elements
are all positive and whose sum is equal to 1. When the masses for the rows are equal,
the value of each element is 1

I . The masses are stored in a vector m so that:

mT1 = 1. (1)

Then, an I× I conformable centering matrix is defined as:

Ξ = I− 1mT, (2)

where I is a conformable identity matrix. The cross-product matrix is obtained by
double-centering the rows and columns of the distance matrix as:

S =−1
2

ΞDΞT. (3)

Both DX and DY are transformed into SX and SY, respectively, which are re-
named as SX0 and SY0 as the input for the first iteration of the DISPLSR algorithm.
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The first latent variable for the predictor is determined from the solution of this
singular value decomposition problem:

(SX0SY0) t1 = δ1t1, (4)

where SX0SY0 is the kernel matrix for the first iteration of DISPLSR, and δ1 and t1

are respectively the first singular value and the first right singular vector of SX0SY0.
The first latent variable for the predictee is computed as:

u1 = SY0t1. (5)

Because the Kernel PLSR latent variables (i.e., t and u) are calculated on the cross-
product matrices, their lengths are not comparable with the latent variables that
are computed in the original PLSR algorithm. Therefore, latent variables have to
be rescaled to the original PLSR algorithm in order to get comparable prediction
[25]. First, we scale u1 to utemp as:

u1temp =
u1

tT1 u1
. (6)

Then, we obtain the weights to rescale t1 as:

t1weight = u1
T
tempSXu1temp . (7)

Finally, we rescale both t1 and utemp as:

t1scaled = t1
√

t1weight , (8)

and
u1scaled = u1temp

√
t1weight . (9)

Once the first latent variables have been computed, the matrices SX0 and SY0 are
deflated. Because we have now condensed the original matrices into cross-product
matrices, the deflation is done directly on the cross-product matrices by multiplying
them with an updating matrix G (i.e., G0 for the first iteration) computed as:

G0 = I− t1scaledt1
T
scaled

. (10)

The cross-product matrices SX0 and SY0 are deflated as:

SX1 = G0SX0GT
0, (11)

and
SY1 = G0SY0GT

0. (12)

This process is continued until all the latent variables have been computed and
rescaled to the original PLSR algorithm length. The latent variables of the predic-
tor are stored in matrix T and the latent variables of the predictee are stored in
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matrix U. To derive the weights (i.e., W) and loadings (i.e., C and P) for DISPLSR,
the original matrices SX and SY are projected onto the space of T and U. We correct
for scaling with the pseudo-inverse of the square root of SX and SY (both being
square matrices) as:

W =
(

SX
1
2

)+
SXU. (13)

C =
(

SY
1
2

)+
SYT, (14)

P =
(

SX
1
2

)+
SXT, (15)

The weights W and the loadings of SY on T, (i.e., C), are normalized so that the sum
of squares equals one. The regression weights BPLS are computed as in Kernel PLSR:

BPLS = W
(
PTW

)−1
CT . (16)
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Fig. 1: Steps for DISPLS regression: compute cross-product matrices; compute ker-
nel matrix; iteratively compute latent variables; compute weights, loadings and re-
gression coefficients

Figure 1 shows the steps involved to generate latent variables and regression
weights in DISPLSR. Once the latent variables and regression weights have been
extracted, the predicted similarity structure is computed as:

ŜY =
1

2
√

I

(
SXBPLSBT

PLSSX
T
)
, (17)
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where 1
2
√

I
is a scaling factor with I being the number of rows (and columns) of DX

and DY. The residual similarity structure is obtained by subtracting the predicted
similarity structure from the original predictee:

S̃Y = SY− ŜY . (18)

The quality of the DISPLSR model is evaluated by the RV coefficient, which is similar
to a squared coefficient of correlation [27, 28], computed as:

RV =
trace{SY

TŜY}√(
trace{SY

TSY}
)(

trace{ŜT
YŜY}

) . (19)

The original predictee is displayed on an MDS map. The regression and residual
are projected as supplementary structures on this map to show the additivity of the
regression model:

Fsup = ST
supFΛΛΛ−1, (20)

where Fsup is the matrix of factor scores for the supplementary similarity structure
(i.e., regression or residual), F is the matrix of factor scores for the predictee, Ssup

is the regression or residual similarity structure, and ΛΛΛ is the diagonal matrix of
the eigenvalues of the predictee. Figure 2 shows the steps involved to compute and
display the regression and residual in DISPLSR.
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Fig. 2: Steps for DISPLS regression: compute regression; compute residual; project
regression and residual as supplementary elements onto map of predictee
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2.1.1 Cross-Validation for DISPLSR

A permutation test on the RV coefficient can be used for hypothesis testing. In a
permutation test, a new data set—called a permuted sample—is obtained by ran-
domly reordering the labels of the rows and columns of one distance matrix and
leaving the other distance matrix unchanged. The DISPLSR model is then recom-
puted for the permuted sample to obtain a new RV coefficient. This procedure is
repeated for a large number of permuted samples, say 1,000 or 10,000. The set of
all the RV coefficients provides a sampling distribution of the RV coefficient under
the null hypothesis. The resulting null distribution of the RV is conditional on the
original distance matrices (see [29] for more details). While the sampling distri-
bution of the RV coefficient for permuted positive semi-definite matrices has been
documented [27, 30], the sampling distribution of the RV coefficients for permuted
distance matrices has not been fully explored.

2.2 Distance-Based Partial Least Squares Correlation

The original application of DISPLSR as a predictive method is ideal only when there
exist a clear predictor and a clear predictee. When both the distance matrices are de-
pendent variables, a correlation technique will better capture the similarity between
the two matrices. The idea behind DIStance-based Partial Least Squares Correlation
(DISPLSC; derived from PLSC [8]) is to extract the commonalities between two dis-
tance matrices. The difference between the algorithms of DISPLSR and DISPLSC is
that for DISPLSC the latent variables are computed in one iteration of the SVD. Also,
because there is no prediction step, the weights W, loadings P and C, and regres-
sion weights BPLS are not computed for DISPLSC. Specifically, the kernel matrix K
is given by:

K = SXSY . (21)

The SVD of K is given by:
K = UΦVT, (22)

where U is the matrix of right singular vectors, V is the matrix of left singular
vectors, and Φ is the diagonal matrix of singular values. The latent variables for SX
(and DX) are given by:

LDX = SXU, (23)

and describe the relationship between the distances in DX with respect to the dis-
tances in DY. The latent variables for SY (and DY) are given by:

LDY = SYV , (24)

and describe the relationship between the distances in DY with respect to the dis-
tances in DX. Figure 3 shows the steps involved in DISPLSC.
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Just lile the quality of the DISPLSR model The quality of the DISPLSC model is
evaluated by the RV coefficient computed between LX and LY (see Eq. 19).

2.2.1 Cross-Validation for DISPLSC

A permutation test on the RV coefficient between the latent variables can be used
for hypothesis testing. As mentioned earlier, a permuted sample is created by ran-
domly reordering the labels of the rows and columns of one distance matrix, leaving
the other distance matrix unchanged. The set of all the RV coefficients computed
from say 1,000 or 10,000 permutations, provides a sampling distribution of the RV

coefficient under the null hypothesis, which is conditional on the original distance
matrices [29].

3 Illustration

We illustrate DISPLSR with data from a neuroimaging experiment, which explored
how the brain semantically categorizes objects [31]. Functional Magnetic Reso-
nance Imaging (f MRI) measures were obtained from the inferior temporal cortex
of four human participants while they viewed pictures of 92 real-world objects. The
similarity between patterns of brain activation elicited for each pair of pictures was
measured as a correlation coefficient r (ranging from −1 to +1), and the correla-
tion distance between these patterns of brain activation was quantified as 1− r. The
authors derived a stimulus-by-stimulus correlation distance matrix from the f MRI

data for each participant and averaged the distance matrices across all four partici-
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pants to get a mean distance matrix. The authors also obtained an averaged stimulus-
by-stimulus correlation distance matrix from single-cell data measured from the
inferior temporal cortex of two monkeys [32]. In addition, the authors computed a
stimulus-by-stimulus correlation distance matrix from the actual pictures used in the
experiment. The pictures were modeled using Gabor filters that generate a computa-
tional model of images based on texture and shape, which closely mimics the Gabor
model of neuronal function in the primary visual cortex of mammalian brains [33].

An MDS was first performed on each of the distance matrices to display the
objects on a map (only the first and second dimensions are displayed). Figure 4a
shows the original map of the stimuli as represented by a Gabor model of the pic-
tures. On the whole we see no categorical structure defined by the Gabor model.
Figure 4b shows the original map of the stimuli as measured by f MRI from the hu-
man participants and Fig. 4c shows the original map of the stimuli as measured by
single-cell recordings from the monkeys. We see categories such as scenes, human
faces, monkeys and other animals in these maps. The single-cell data from the mon-
keys were more robust than the f MRI data from human participants and revealed
some of the categories more clearly.

Fig. 4: (a) MDS map for the Gabor model of pictures; (b) MDS map for f MRI data
from human participants; (c) MDS map for single-cell data from monkeys

We performed three separate DISPLSR analyses for the data. The first DISPLSR

analysis used the distances from the Gabor model of the pictures (Fig. 4a) as the pre-
dictor and the distances from the f MRI data from the human participants (Fig. 4b)
as the predictee. Figure 5a shows the map of the stimuli represented by the f MRI

data as predicted from the Gabor model of the pictures (which appears to be lin-
ear because the predictor and predictee might have only one dimension in com-
mon). If we compare this map with the original map of stimuli derived from the
f MRI data (see Fig. 4b), we see that DISPLSR predicts the face category, oblong
objects and the roundabout on the first and second dimensions. If we subtract the
map of the regression (Fig. 5a) from the original map (Fig. 4b), we obtain the resid-
ual map (Fig. 5b), which shows what is unique to brain activation in the inferior
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temporal cortex (i.e., cannot be predicted from the Gabor model of the pictures)
such as semantic categories of faces (both human and monkey), animals, vegetables
and scenes.

Fig. 5: (a) Regression map: human f MRI data as predicted by the Gabor model of
the pictures; (b) residual map: human f MRI data not predicted by the Gabor model
of the pictures

The RV coefficient computed between the prediction and the original data from
the human participants was equal to 0.08, this value—even though quite small—was
statistically significant at p < 0.001 based on the permutation test. The DISPLSR

analysis has modelled the information encoded in the brain as the sum of low-level
information predicted by the Gabor model of the pictures and the high-level infor-
mation unique to the brain.

The second DISPLSR analysis used the distances from the Gabor model of the
pictures (Fig. 4a) as the predictor and the distances from single-cell data from the
monkeys (Fig. 4c) as the predictee. Figure 6a shows the map of the stimuli repre-
sented by the single-cell data as predicted from the Gabor model of the pictures.
If we compare this map with the original map of stimuli derived from the single-
cell data (see Fig. 4c), we see the separation of oblong or rectangular objects from
the circular objects on the first and second dimensions. If we subtract the map of
the regression (Fig. 6a) from the original map (Fig. 4c), we obtain the residual map
(Fig. 6b), which isolates semantic categories (Fig. 4c). Because the single-cell data
are more robust, the residual did not isolate much of the categorical structure. The
RV coefficient between the prediction and the original data from the monkeys was
not statistically significant based on a permutation test.

Because of the similarity between primate and human vision [34], we can reason-
ably speculate that some of the basic semantic categories in humans could be traced
back to semantic categorization in monkeys. The third DISPLSR analysis used the
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Fig. 6: (a) Regression map: monkey single-cell data as predicted by the Gabor model
of the pictures; (b) residual map: monkey single-cell data not predicted by the Gabor
model of the pictures

residual from the DISPLSR analysis for the monkeys (Fig. 6b) as the predictor and
the residual from the DISPLSR analysis for the human participants (Fig. 5b) as the
predictee in order to predict the semantic categorical structure in humans from the
semantic categorical structure in monkeys (after removing perceptual information
modeled by the Gabor filters).

Figure 7a shows the map of the stimuli represented by the f MRI data (not
predicted by Gabor model) from the humans as predicted from the single-cell data
(not predicted by Gabor model) from the monkeys. The first dimension separates the
basic categories of animate and inanimate objects, and the second dimension sepa-
rates the non-human and human related categories. This could imply that these mon-
keys (who were accustomed to a human environment) and human participants share
information about these categories. If we subtract the map of the regression (Fig. 7b)
from the original map (Fig. 5b), we obtain the residual map (Fig. 7b), which isolates
semantic categories unique to human participants such as the natural and artificial
objects. The RV coefficient between the prediction and the residual data from the
DISPLSR analysis for the human participants was not statistically significant based
on a permutation test.

Lastly, we performed a DISPLS Correlation analysis to determine the common-
alities between the data from the human participants and the monkeys. Figure 8a
shows the first dimension of the latent similarity structure for both the human par-
ticipants and the monkeys. We see that the first dimension separates the animate and
inanimate objects. Figure 8b shows the second dimension of the latent similarity
structure for both the human participants and the monkeys.

We see that the second dimension separates the natural and artificial objects. It is
important to note that each of these maps only depict one dimension and therefore
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Fig. 7: (a) Regression map: non-Gabor f MRI data from the human participants as
predicted by the non-Gabor single-cell data from the monkeys; (b) residual map:
non-Gabor f MRI data from the human participants not predicted by by non-Gabor
single-cell data from the monkeys

Fig. 8: (a) First dimension of latent similarity structures for monkeys and human
participants; (b) second dimension of latent similarity structures for monkeys and
human participants

objects that are be better represented on other orthogonal dimensions might appear
to be mis-categorized. The RV coefficient of 0.75 between the latent variables for
the human participants and the latent variables for the monkeys was found to be
statistically significant at p < 0.001 based on a permutation test.
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4 Discussion

DISPLSR is a regression method, and so the residual will contain the unexplained
part of experimental variance, which may confound the results of a DISPLSR anal-
ysis. DISPLSR (in combination with DISTATIS) can also be used to describe the
directional dependencies of three or more sets of variables for path modeling or
multi-block analyses. The reliability of the DISPLSR maps can be tested with the
bootstrap method to generate confidence intervals for the predictee, predictor and
residual [35]. A limitation of DISPLSR is that bootstrap maps are only generated
when the original data, which were used to derive the distances between categories
of observations, are available. Although other techniques exist that find common-
alities between multiple distance matrices (e.g., GPA, INDSCAL, DISTATIS), it is
worth exploring the potential of DISPLS Correlation (DISPLSC) to capture the in-
formation from one distance matrix in relation to the information from another dis-
tance matrix. More research is required to investigate the permutation of distance
matrices in order to obtain a random sampling distribution, although a permuta-
tion test with the RV coefficient for both DISPLSR and DISPLSC is currently possi-
ble. The prediction-based approach for distance matrices offered by DIStance-based
Partial Least Squares Regression (DISPLSR), and the association-based approach
for distance matrices offered by DIStance-based Partial Least Squares Correlation
(DISPLSC) provide essential links between various domains of research.
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Dimension Reduction and Regularization
Combined with Partial Least Squares in High
Dimensional Imaging Genetics Studies
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Abstract In the imaging genetics field, the classical univariate approach ignores
the potential joint effects between genes or the potential covariations between brain
regions. In this paper, we propose instead to investigate exploratory multivariate
methods, namely partial least squares regression or canonical correlation analysis, in
order to identify a set of genetic polymorphisms covarying with a set of neuroimag-
ing phenotypes. However, in high-dimensional settings, such multivariate methods
may encounter overfitting issues. Thus, we investigate the use of different strate-
gies of regularization and dimension reduction, combined with PLS or CCA, to face
the very high dimensionality of imaging genetics studies. We propose a comparison
study of the different strategies on a simulated dataset. We estimate the general-
isability of the multivariate association with a cross-validation scheme and assess
the capacity of good detection. Univariate selection seems necessary to reduce the
dimensionality. However, the best results are obtained by combining univariate fil-
tering and L1-regularized PLS, which suggests that discovering meaningful genetic
associations calls for a multivariate approach.

Key words: Canonical correlation analysis, SNPs, GWAS, L1 and L2 regularization

E. Le Floch (�) • V. Guillemot • J.-B. Poline • V. Frouin • E. Duchesnay
CEA, Saclay, Paris, France
e-mail: edith.lefloch@gmail.com;vincent.guillemot@cea.fr;jean-baptiste.poline@cea.fr;
vincent.frouin@cea.fr;edouard.duchesnay@cea.fr

L. Trinchera
Rouen Business School, Rouen, France
e-mail: ltr@rouenbs.fr

A. Tenenhaus
Supélec, Gif-sur-Yvette, Paris, France
e-mail: arthur.tenenhaus@supelec.fr

H. Abdi et al. (eds.), New Perspectives in Partial Least Squares and Related Methods,
Springer Proceedings in Mathematics & Statistics 56, DOI 10.1007/978-1-4614-8283-3 9,
© Springer Science+Business Media New York 2013

147

mailto:edith.lefloch@gmail.com; vincent.guillemot@cea.fr; jean-baptiste.poline@cea.fr
mailto:vincent.frouin@cea.fr; edouard.duchesnay@cea.fr
mailto:ltr@rouenbs.fr
mailto:arthur.tenenhaus@supelec.fr


148 E. Le Floch et al.

1 Introduction

Brain imaging is increasingly recognized as an intermediate phenotype in
understanding the complex path between genetics and behavioral or clinical phe-
notypes. In this context, a first goal is to propose methods with good sensitivity to
identify the part of genetic variability that explains some neuroimaging variability.

Classical approaches rely on massive univariate linear modeling (MULM) [11],
ignoring the potential interactions between genes or between brain regions. To over-
come this limitation, we investigate exploratory multivariate methods in order to
identify a set of Single Nucleotide Polymorphisms (SNPs) covarying with a set of
neuroimaging phenotypes, derived from functional Magnetic Resonance Imaging
(f MRI) data.

Partial least squares (PLS) regression [16] and canonical correlation analysis
(CCA) [6] appear to be good candidates in order to look for associations between
two blocks of data, as they extract pairs of covarying/correlated latent variables
(one linear combination of the variables for each block). Another approach has also
been proposed by [1] based on parallel independent component analysis in order
to combine functional MRI data and SNPs from candidate regions. Nevertheless,
all these multivariate methods encounter critical overfitting issues due to the very
high dimensionality of the data. To face these issues, methods based on dimension
reduction or regularization can be used.

Dimension reduction is essentially based on two paradigms: feature extraction
and feature selection. Feature extraction looks for a low-dimensional representation
of the data that explains most of its variability, such as principal components anal-
ysis (PCA). Feature selection methods may be divided into two categories: some
univariate methods, which select relevant features independently from each other,
and some multivariate methods, which consider feature inter-relations to select a
subset of variables [5].

As for regularization, a sparse (L1-regularized) version of PLS [2, 7, 9, 14, 15]
and an L2-regularised CCA [10] have recently been shown to provide good results
in correlating two blocks of data such as transcriptomic and metabolomic data, gene
expression levels and gene copy numbers, or gene expression levels and SNP data.
Here we propose to transpose this idea to the SNP versus imaging context. One
may note that such sparse multivariate methods based on L1 penalization actually
perform variable selection. Vounou et al. [13] also introduced a promising similar
method, called sparse reduced-rank regression and based on L1 penalization, that
they applied to a simulated dataset made of thousands of SNPs and brain imaging
data. This method is equivalent to sparse PLS in our high dimensional settings, since
they make the classical approximation that in this case the covariance matrix of each
block may be replaced by its diagonal elements.

We propose a comparison study, on a simulated dataset, of various regularization
and preliminary dimension reduction strategies combined with PLS or CCA to deal
with an increasing number of irrelevant SNPs in the training dataset. This work is
complementary to ongoing studies conducted on experimental datasets since, know-
ing ground truth, it provides a new and essential insight into the different methods.
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2 Simulated Dataset

A realistic dataset mimicking SNP and fMRI data was simulated in order to study
the behavior of the different methods of interest, while knowing ground truth.
A dataset Y of 500 samples with 34 imaging phenotypes was simulated from a mul-
tivariate normal distribution with parameters estimated from experimental data.

In order to simulate genotyping data with a genetic structure similar to that of our
real data, we considered a simulation method that uses the HapMap CEU panel. We
used the gs algorithm proposed by [8] with the phased (phase III) data for CEU un-
related individuals for Chromosome one; we only consider the genotype simulation
capability of this software that may also generate linked phenotypes. We generated
a dataset X consisting in 85,772 SNPs and 500 samples, using the extension method
of the algorithm. We randomly selected 10 SNPs (out of 85,772) having a MAF
equal to 0.20 and 8 imaging phenotypes (out of 34). We induced two independent
causal patterns: for the first pattern we associated the first 5 SNPs with the first 4
imaging phenotypes; the second pattern was created associating the 5 remaining
SNPs with the 4 last phenotypes. For each causal pattern i ∈ {1,2}, we induced a
genetic effect using an additive genetic model involving the average of the causative
SNPs (xik): x̄i = ∑5

k=1
1
5 xik. Then each imaging phenotype yi j ( j ∈ [1, . . . ,4]) of the

pattern i was affected using a linear model:

y�i j = yi j +βi jx̄i (1)

The parameter βi j was set by controlling for the correlation (at a value of 0.50)
between the jth affected imaging phenotype (y�i j) and the causal SNPs (x̄i) i.e.:
corr(y�i j , x̄i) = 0.50. Such control of the correlation (or the explained variance) is
equivalent to the control of the effect size while controlling for the variances of
SNPs (var(x̄i)) and (unaffected) imaging phenotypes (var(yi j), as well as any spu-
rious covariance between them (cov(yi j, x̄i)). We favor such control over a simple
control for the effect size since the later may result in arbitrary large or weak asso-
ciations depending on the genetic/imaging variances ratios.

SNPs whose r2 coefficient with any of the causal SNPs is at least 0.80 are also
considered as causal. Such linkage disequilibrium (LD) threshold, commonly used
in the literature [3], led to 56 causal SNPs: 32 in “Pattern 1” and 24 in “Pattern 2.”
We use these SNPs as “ground truth” of truly causal SNPs to compute the power of
good detection of the learning methods. Finally, we stripped off 10 blocks of SNPs
around the 10 causal SNPs, from the whole genetic dataset, considering that neigh-
boring SNPs were in LD with the marker if their r2 were at least 0.20. The 5 first
(resp. last) blocks, of Pattern 1 (resp. 2), are made of 127 (resp. 71) SNPs and con-
tain all the 32 (resp. 24) SNPs that were declared as causal. The stripped blocks were
concatenated and moved at the beginning of the dataset leading to 198 (127 + 71) in-
formative features followed by 85,574 (i.e., 85,772− 198) non-informative (noise)
features. Such a dataset organization provides a simple way to study the meth-
ods’ performances while the dimensionality of the input dataset increases from 200
(mostly made of informative features) to 85,772 mostly made of noise.
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3 Methods

3.1 Partial Least Squares and Canonical Correlation Analysis

PLS regression or CCA are used to model the associations between two blocks of
variables (X and Y) hypothesizing that they are linked through unobserved latent
variables. The latent variables (or components) are linear combinations of the ob-
served variables, obtained by finding two weights vectors (u and v).

PLS builds successive and orthogonal latent variables for each block such that at
each step the covariance between the pair of latent variables is maximal.

max
||uh||2=||vh||2=1

u′hX′h−1Yh−1vh (2)

with X0=X and Y0=Y (whose columns have been standardized), and where Xh−1

and Yh−1 are the deflated matrices obtained by subtracting, from blocks X and Y, the
effects of their own previous latent variables respectively. This optimization prob-
lem is solved using the iterative algorithm of two-block PLS Regression (PLS2).
Please note that PLS regression usually refers to an asymmetrical deflation of the
two blocks of data (by the same latent variable: the one corresponding to block X),
instead of the symmetrical deflation mode used here, called canonical mode.

CCA differs from PLS in that it maximizes the correlation (instead of the covari-
ance) between latent variables at each step h:

max
||uh||=||vh||=1

u′hX′Yvh√
u′hX′Xuh

√
v′hY′Yvh

(3)

The solution may be obtained by computing the SVD of (X′X)−1/2 X′Y (Y′Y)−1/2.
For numerical issues, we use the dual formulation of CCA based on a linear kernel:
Kernel CCA (KCCA).

3.2 Regularization Techniques

3.2.1 L2 Regularization of CCA

In order to solve the overfitting issue, regularization based on L2 penalization may
be introduced within CCA, by replacing the matrices X′X and Y′Y by X′X+ λ2I
and Y′Y+λ2I. We call this method rKCCA.

However in high-dimensional settings, an extreme regularization is required such
that regularized CCA becomes equivalent to PLS. Indeed, the approximation is often
made that the covariance matrices 1

n−1 X′X and 1
n−1 Y′Y may be replaced by identity

matrices.
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3.2.2 L1 Regularization of PLS

Pushing further regularization, authors [7, 13] have proposed an approach that in-
cludes variable selection in PLS regression, based on L1 penalization of the SNP
weight vector uh and leading to sparse PLS (sPLS):

min
||uh||2=||vh||2=1

−u′hX′h−1Yh−1vh +λ1X ||uh||1 (4)

where λ1X is the L1-penalization parameter for the weight vector of block X. The
sPLS criterion is bi-convex in uh and vh and may still be solved iteratively for uh

fixed or vh fixed, using soft-thresholding of uh within the inner loop of the PLS2
algorithm. Indeed, for vh fixed,

ûh = gλ1X
(X′h−1Yh−1vh) (5)

where gλ (y) = sign(y)(|y|−λ )+ is the soft-thresholding function.
For the sake of simplicity, in the rest of the paper, we replaced the penalization

term by the sPLS selection rate: sλ1X
, as the number of selected SNPs (with non null

weights) out of the total number of variables of that block.
Sparse versions of CCA have also been proposed by [9, 14, 15]. However, they

use the approximation described in Sect. 3.2.1, making sparse CCA equivalent to
sPLS.

3.3 Preliminary Dimension Reduction Methods

3.3.1 Principal Component Based Dimension Reduction

Another approach to solve overfitting issues is the use of preliminary dimension
reduction methods. We first used principal component analysis (PCA) to perform
dimension reduction on each block of data (keeping as many components as neces-
sary to explain 99 % of the block variance) before applying PLS (PCPLS) or CCA
(PCKCCA). Regularization was not necessary anymore in that case, as the dimen-
sionality had been dramatically reduced.

3.3.2 Univariate SNP Filtering

A second way to perform preliminary dimension reduction was to add to (s)PLS a
first step of univariate filtering on the SNPs. We call this two-step method f(s)PLS.
Similarly, we applied KCCA after a step of univariate filtering and called it fKCCA.
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3.4 Comparison Study and Performance Evaluation

We compared the performances of the different methods on our simulated dataset.
We first compared PLS and CCA, then investigated how their performance is im-
proved by regularization with sparse PLS and L2-regularized CCA. Finally we
assessed the influence of a first dimension reduction step by PCA or filtering. Note
that computations were always limited to the two first pairs of latent variables for
computational time purposes. We also computed the performance of MULM to
compare with the multivariate methods. Finally we assessed the performance of
principal component regression (PCR) of the two first imaging principal compo-
nents onto the genetic components explaining 99 % of the genetic variance.

3.4.1 Cross-Validation Procedure

We first evaluated the performances of the different methods by assessing the gener-
alizability of the link they find between the blocks, using a five-fold cross-validation
scheme. For each method, at each fold of the cross-validation (CV), the estimation
of the model (weight vectors) was done on a training sample of 100 subjects and
tested on a left-out sample of 400 subjects. Indeed, at each fold, the weights thus
obtained were used to build the factorial scores of the “test” sample (the set of
left out subjects) and the correlation coefficient between those factorial scores was
computed. This yielded an average “test” correlation coefficient over folds, called
the out-of-sample correlation coefficient, which reflects the link between the two
blocks estimated on unseen subjects. Please note that at each fold, while the cor-
relation coefficient obtained on the training samples is forced to be positive, the
out-of-sample correlation coefficient may happen to be negative.

We performed a CV for MULM as well, where at each fold the two most signif-
icantly associated SNP/phenotype pairs on the training sample were extracted and
tested by computing their correlation coefficient on the left-out sample.

3.4.2 Positive Predictive Value

Finally, since ground truth was known with simulated data, we could also com-
pare the performances of the different methods by computing the Positive Predictive
Value (PPV) when 50 SNPs are selected by each method. This is almost equivalent
to the specificity of each method in our case where 50 SNPs are selected, since there
are 56 causal SNPs in our simulated dataset. PPV curves were separately computed
on 5 non-overlapping subsamples of 100 observations and averaged over these 5
subsamples. It should be noted that the informative SNPs that are not considered as
causal are only slightly correlated to causal SNPs. Therefore they were removed to
compute the PPV, since they could not really be identified as true or false effects.
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4 Results

We investigated the performances of the different regularization and preliminary
dimension reduction strategies combined with PLS or CCA, with a genetic dataset
containing an increasing number of features varying between 200 (containing the
informative SNPs) and 85,772 SNPs (the full dataset, mostly made of noise).

In Figs. 1 and 2 on the left column, we evaluated whether the link obtained be-
tween the imaging and SNP datasets could generalize to new unseen test subjects,
using a cross-validation scheme. We computed the average out-of-sample corre-
lation over the folds. On the right column, in order to evaluate the power of good
detection of the causal SNPs, we calculated the PPV of each strategy, when 50 SNPs
are selected, for each of the two first component pairs.

4.1 Influence of Regularization

We were first interested in comparing the performances of PLS and CCA when the
number of SNPs p increases, and investigating the influence of L1 regularization on
PLS and of L2 regularization on CCA.

Figure 1 shows regularization strategies starting with rKCCA with various L2

regularization values (λ2) that range from 0 (pure CCA) to 10,000 (which behaves
like classical PLS). Then we pushed forward this penalization by experimenting
sPLS with various L1 regularization values from 75 % of the SNPs with non null
weights to an extreme penalization with only 10 % of selected SNPs.

On the left panel, we show the out-of-sample correlation coefficients obtained
with the different methods for the two first component pairs, and it shows that in the
lower dimensional space (p = 200) mostly made of informative features, the pure
CCA, rKCCA without regularization (λ2 = 0), has overfitted the “training” data on
the first component pair (“training” corr. ≈ 1 and “test” corr. ≈ 0.20). Such a result
highlights the limits of pure CCA to deal with situations where the number of train-
ing samples (100) is smaller than the number of dimensions (p = 200). However,
with a suitable regularization in such a low-dimensional setting, rKCCA(λ2 = 100)
performed better than all other methods, notably all (sparse) PLS. This results was
expected since the evaluation criterion (correlation between factorial scores) is ex-
actly the one which is maximized by CCA.

Nevertheless, the increase of space dimensionality (with irrelevant features)
clearly highlighted the superiority of PLS and more notably sPLS over rKCCA
in high-dimensional settings: the performance of rKCCA rapidly decreased while
sPLS (sλ1X

= 0.1) tolerated an increase of the dimensionality up to 1,000 features
before its performance started to decrease. One may note that as expected theoret-
ically, along with the increase of penalization (λ2), rKCCA curves smoothly con-
verged toward PLS.

On the second component pair, the results are less clearly interpretable. However
(s)PLS curves were above the rKCCA ones.
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The four graphs on the right panel of Fig. 1 demonstrate the superiority of sPLS
methods to identify causal SNPs on the two first genetic components. Indeed, PPV
curves show a smooth increase of the performance, when moving from unregular-
ized CCA [rKCCA(λ2 = 0)] to strongly regularized PLS [sPLS(sλ1X

= 0.10)]. More-
over, while the out-of-sample correlation coefficient was not an appropriate measure
to distinguish between the two causal patterns, PPV curves were computed for each
pattern separately. One may note that the PPV on the first genetic component ap-
pears to be higher for the first pattern than for the second pattern (more visibly in
low dimensions), while the opposite trend is observed on the second genetic com-
ponent. That observation tends to show that the first causal pattern is captured by
the first component pair, while the second pattern is captured by the second pair.

Fig. 1: Influence of regularization

4.2 Influence of the Dimension Reduction Step

We then investigated the influence of a first step of dimension reduction. Figure 2
presents different dimension reduction strategies: principal component (PC), filter
(f), sparse (s) and combined filter + sparse (fs) methods. Here the parameter setting,
50 selected SNPs, was derived from the known ground truth (56 true causal SNPs).
The 50 SNPs were either the 50 best ranked SNPs for (f) methods, the 50 non-null
weights for sparse PLS or a combination of both for fsPLS: either 10 % of the 500
best ranked SNPs or 50 % of 100.
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Fig. 2: Influence of dimension reduction. (f) Methods are superimposed with
MULM for PPV

On the left panel, we show that all PC-based methods (green curves) failed to
identify generalizable covariations when the number of irrelevant features increases.

Dimension reduction based on filtering failed with CCA but greatly improved
the performance of classical PLS: fPLS(k = 50) was the second best approach in
our comparative study.

Moreover, as previously observed in Fig. 1, L1 regularization limited the over-
fitting phenomenon (see sPLS(sλ1X

∗ p = 50) in Fig. 2) and delayed the decrease of
PLS performance when dimensionality increased. Finally the best performance was
obtained by combining filtering and L1 regularization: fsPLS(k = 100, sλ1X

= 0.50),
which kept 100 SNPs after filtering and selected 50 % of those SNPs by sPLS. Please
note that the performance of fsPLS(k = 500, sλ1X

= 0.10) was lower and similar to
that of sPLS(50) in low dimensions, but became more robust than sPLS and equiva-
lent to fsPLS(k = 100, sλ1X

= 0.50) in higher dimensions. However, the purely uni-
variate strategy based on MULM showed poor generalizability, which suggests that
even though filtering is necessary to remove irrelevant features, it cannot capture the
imaging/genetics link by itself and needs to be combined with a multivariate step.

Again, on the second component pair, the results are less clearly interpretable, but
the curves of the strategies combining filtering and sparsity were above the others.
The graphs on the right panel of Fig. 2 show similar results in terms of PPV.
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5 Discussion

5.1 Performance of the Two-Step Method fsPLS

We have shown that the approach combining univariate filtering with sparse PLS
performs much better than the other regularization or dimension reduction strate-
gies combined with PLS or KCCA, in high dimensions. Indeed, even though sparse
PLS performs better than PLS and (regularized) KCCA, it does not seem able to
overcome the overfitting issue by itself, which suggests that a first step of dimen-
sion reduction is also necessary. Univariate filtering appears to be the best solution,
especially when combined with sPLS, while PC-based methods fail in that respect.

5.2 Influence of the Parameters of Univariate Filtering
and L1 Regularization

We tried to assess the influence of the parameters of univariate filtering and sPLS
selection on the generalizability of the link found by fsPLS between the two blocks
of data, which explains why we repeated the cross-validation procedure and the PPV
analysis for different pairs of parameters.

Our results show that when the dimensionality increases, fsPLS tends to extract
the most generalizable neuroimaging/genetics link when considering 100 SNPs after
filtering and 50 % of these SNPs selected by sPLS. Those results raise the question
of the relative contribution of the univariate filtering and the sparsity constraint to
select relevant features. A relatively large number of SNPs kept after filtering seems
to be required, up to a trade-off between the numbers of true and false positives, to
allow sPLS to extract a robust association between a multivariate pattern of SNPs
and a multivariate neuroimaging pattern. However, univariate filtering appears to
be a mandatory step to filter out the vast majority of irrelevant features, especially
when the dimensionality increases.

Another reason to perform univariate filtering is that PLS and even sparse PLS
are too sensitive to a large number of irrelevant features, as they try to explain the
variance of each block while trying to find some link between the blocks. Indeed,
let us remind the criterion that is maximized by PLS regression:

max
‖u‖2=‖v‖2=1

corr(Xu,Yv)
√

var(Xu)
√

var(Yv), (6)

where the first term is the inter-block correlation between the two latent variables
of each block and the two last terms the intra-block standard deviations of the latent
variable of each block. In the case of very large blocks, the two terms of intra-block
standard deviations weigh much more than the term of inter-block correlation, as
discussed by [12]. Univariate filtering helps to solve this problem by reducing the
number of SNPs and selecting the ones that are more correlated to the phenotypes.
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5.3 Potential Limitations of fsPLS

Although common practice in genome wide association studies, univariate tests may
not be the best filter and it could be interesting to consider multivariate filters that
account for specific interactions between potential predictors [4]. For instance a
limitation of univariate filtering may be that it filters out suppressor variables. Indeed
such variables are useful to remove the non-specific variability of the relevant SNPs,
improving their predictive power, while being themselves not correlated (and thus
not detectable) with imaging phenotypes.

As for penalization, even though it is well-known that it plays an important
role when trying to uncover specific relationships among high-dimensional data,
the choice of the penalization is also important. For instance, an L1, L2 or L1-L2

(elastic net) penalization scheme does not give rise to the same results when data
are correlated. Indeed in the case of correlated variables grouping into a few clus-
ters, L1 penalization tends to select one “representative” variable of each cluster,
which facilitates the interpretation of the results but may lead to an unstable so-
lution, whereas L2 penalization and the elastic net criterion tend to emphasize the
whole set of correlated predictors. In our case, we observed that the L1 penalization
combined with the implicit extreme L2 penalization of PLS led to an elastic net be-
havior of sPLS. Indeed, SNPs are spatially correlated in blocks due to LD and sPLS
tends to select LD blocks. One could investigate more sophisticated penalizations
that take into account the correlation structure of the data.

6 Conclusion

To conclude, the originality of this work was to investigate a two-step method com-
bining univariate filtering and sparse PLS, called fsPLS, and we showed that it per-
formed much better than other regularization or dimension reduction strategies com-
bined with PLS or KCCA, on high-dimensional simulated imaging genetics data.
Even though univariate filtering may seem to contradict the very nature of multi-
variate methods such as PLS, it still allows sPLS to extract a multivariate genetic
pattern (among the remaining SNPs) covarying with an imaging pattern and appears
to be necessary to overcome the overfitting issue in very high dimensional settings.
This suggests that if individual variability in the genome contains predictors of the
observed variability in brain phenotypes, they can be detected by fsPLS even though
they may not be detected by a univariate screening only, or by standard regularized
multivariate methods.
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Natasa Kovacevic, Hervé Abdi, Derek Beaton, for the Alzheimer’s Disease
Neuroimaging Initiative∗, and Anthony R. McIntosh

Abstract PLS as a general multivariate method has been applied to many types of
data with various covariance structures, signal strengths, numbers of observations
and numbers of variables. We present a simulation framework that can cover a wide
spectrum of applications by generating realistic data sets with predetermined effect
sizes and distributions. In standard implementations of PLS, permutation tests are
used to assess effect significance, with or without procrustes rotation for matching
effect subspaces. This approach is dependent on signal amplitude (effect size) and,
as such, is vulnerable to the presence of outliers with strong amplitudes. Moreover,
our simulations show that in cases when the overall effect size is weak, the rate
of false positives—and to a lesser extent—false negatives, is quite high. From the
applications point of view, such as linking genotypes and phenotypes, it is often
more important to detect reliable effects, even when they are very weak. Reliabil-
ity in such cases is measured by the ability to observe the same effects supported
by the same patterns of variables, no matter which sets of observations (subjects)
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1 Introduction

Partial Least Squares (PLS) is a versatile multivariate method that has been applied
to many data types in neuroimaging, Psychology, physiology, Genetics, and Chemo-
metrics to name but a few [1–3]. In neuroimaging, the standard application of PLS is
PLS-correlation (PLSC, see [1]) whose computational core consists in the singular
value decomposition of the correlation matrix of the variables from two matrices. In
this context, the singular vectors are called saliences and the associations between
the two data tables are explored with latent variables (LVs) computed as the pro-
jection of each table on its corresponding saliences (see, e.g., [1], for details). More
recently, researchers have been interested in investigating large scale data sets with
weak signals, as found, for example, when relating genotypes and complex pheno-
types (e.g., personality traits, body weight). For these problems, PLS methods offer
an excellent framework. However, it is difficult to interpret and validate genotype-
phenotype associations obtained by PLS because the ground truth is not known. For
this reason it is important to generate simulated data and hone the ability of PLS to
correctly detect weak but reliable signals.

More generally, PLS validation requires a simulation framework that can cover
a wide range of applications that vary in covariance structure, signal strength, num-
ber of observations and variables. In this work, we present a set of simulations
where significance testing—within the standard PLS implementation—shows a
clear propensity to Type I errors, and much more so for certain data types. PLS meth-
ods seem to be more prone to this Type I error inflation when the cross-validation
approach—used to derive the sampling distribution under the null hypothesis—
involves Procrustes rotations to project the LVs from the permuted data onto the
original LVs (as done in the current implementation of PLSC, see [2]).

It is well known that significance testing using permutation tests is essentially
amplitude driven and vulnerable to the presence of outliers ([4]). We have found,
in practice, another weakness of PLS when it is applied to a weak correlation
structure between predictor and response variables, where one of these two data
sets has a very weak covariance structure while the other set has a very strong
covariance structure between variables (as is often the case in “brute force” ap-
proaches to genotype-phenotype associations). In such cases, the strength of corre-
lations between response variables (e.g., highly redundant behavioral measures)—
even though not necessarily related to the genes—can overpower the permutation
tests and falsely identify genotype-phenotype associations. When this is the case,
using completely random genetic data will produce similar results to the analysis
performed on real genetic data (because the analysis is driven by the other set).
Therefore, a more appropriate question then is: Can we detect associations (i.e.,
LVs) that reliably represent specific genotype-phenotype links, such that any set of
subjects would produce similar LVs with simultaneous, better-than-chance similar-
ity for both associated patterns (e.g., genotype and phenotype)?

Motivated by such examples, we designed a Monte-Carlo simulation frame-
work, flexible enough to mimic many realistic scenarios, with the advantage that we
could manipulate the ground truth. We also introduced a new split-half resampling
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framework for reliability testing, similar to [5], as an alternative to significance (null
hypothesis) testing within the PLS approach. We then compared results obtained
with classical PLSC analysis with and without Procrustes rotations to those obtained
using split-half reliability testing.

Although the work presented here is general in nature and applies to different
data types, our starting point was the PLSC methodology as implemented in the
PLSC software package ([2]), which focuses on neuroimaging applications. We will
therefore use terminology appropriate for neuroimaging applications, where pre-
dictor variables are typically some sort of brain imaging data, as in [2]. Typically,
subjects are split across several groups and their data are collected under different
experimental conditions. In this spirit, observations are condition specific subject
data and predictor variables are voxels. Task-PLS refers to the data driven approach
where stacked subjects voxel data are tested for group/condition membership pat-
terns, called task effects. Seed-PLS refers to data driven analysis of the correlation
matrix between entire brain data and a (typically small) subset of voxels, called
seeds, where correlations are calculated across group and condition specific subject
data. In this case, PLS also extracts group/condition patterns in correlations (see [1]
for details).

2 Simulations

We used real data as a starting point for our simulations in order to create realistic
scenarii while manipulating effect sizes and noise sizes and distributions. These
data sets were chosen from brain imaging, behavior, and genetics to represent a
wide range of data dimensions, specifically number of observations and number of
predictor variables. These synthetic data sets were then tested with two main flavors
of PLS, data driven task-PLS and seed-PLS.

2.1 Real Data Sources

We used three different types of real data: electro-encephalogram, behavior, and
genetics.

2.1.1 Event Related Potentials (ERP) Data

The first set consists of electroencephalogram (EEG) data from a total of 48 subjects
whose data were collected across 2 experimental conditions. In addition, subjects
were divided into 3 age groups, with 16 subjects in each group: Young (mean age
22± 3 years), Middle (mean age 45± 6 years) and Older (mean age 66± 6 years).
For the purposes of the present work, we used two visual perceptual matching tasks
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from the larger study that involved six conditions. Visual stimuli were presented
simultaneously in a triangular array. In the perceptual matching task (PM), subjects
indicated which of the three bottom stimuli matched the one on the top by pressing
one of three buttons. In the delayed match to sample task (DMS), the instructions
were the same as in the PM, except that the three bottom row stimuli were presented
after a 2.5 s delay following the presentation of the top row stimulus.

EEG recordings from 76 electrodes were collected using BioSemi Active Two
system with a bandwidth of 99.84 (0.16 100) Hz and sampling rate of 512 Hz. Data
were recorded reference-free, but were converted to an average reference at Cz dur-
ing the pre-processing. We utilized standard preprocessing steps for ERP data analy-
sis. Continuous EEG recordings were bandpass filtered from 0.5 to 55 Hz. Data from
trials with correct responses were “epoched” and base-lined into [−500 2,000] ms
epochs with a [−500 0] ms pre-stimulus baseline. Artifact removal was performed
using Independent Component Analysis (ICA). The data were averaged across tri-
als for each condition separately. For our simulations we considered only [0 500]ms
time window (257 time points) of the averaged data.

This represents a scenario with a small number of subjects (48), a large number
of predictors (EEG channels× time points = 76×257= 19,532), that are somewhat
strongly correlated (see Fig. 1A) and a small number of group/condition dimensions
(3 age groups× 4 conditions = 12).

a b c

Fig. 1: Correlation matrices for three real data sets. Each matrix was derived from
all available observations. Notice the wide variety in voxel space dimensionality and
correlation strengths

2.1.2 Genes and Behavior: Genetic Data

Genetic and associated behavioral data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.ucla.edu). The ADNI was launched in 2003 by the National Institute
on Aging (NIA), the National Institute of Biomedical Imaging and Bioengineer-
ing (NIBIB), the Food and Drug Administration (FDA), private pharmaceutical
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companies and non-profit organizations, as a $60 million, 5-year public–private
partnership. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological
markers, and clinical and neuropsychological assessments can be combined to mea-
sure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). Determination of sensitive and specific markers of very early AD
progression is intended to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as lessen the time and cost of clinical trials.
The Principal Investigator of this initiative is Michael W. Weiner, MD, VA Medical
Center and University of California at San Francisco. ADNI is the result of efforts
of many co-investigators from a broad range of academic institutions and private
corporations, and subjects have been recruited from over 50 sites across the U.S.A.
and Canada. The initial goal of ADNI was to recruit 800 adults, aged from 55 to 90,
to participate in the research, approximately 200 cognitively normal older individu-
als to be followed for 3 years, 400 people with MCI to be followed for 3 years and
200 people with early AD to be followed for 2 years. For up-to-date information,
see www.adni-info.org.

In the ADNI database, the genetic information of each participant is a long list
of pairs (one per chromosome) of DNA nucleotides (A, T , C, and G)—which could
occur in 24 = 16 different configurations—grouped in 23 chromosomes, amounting
to roughly 600,000 genetic markers. However, after standard preprocessing with
PLINK (pngu.mgh.harvard.edu/purcell/plink/, e.g., with a call rate of 90% and mi-
nor allele frequency of 5%, [6]) we were left with approximately 500,000 genomic
locations that show enough variability in a population. These locations of variability
are called single nucleotide polymorphisms (SNPs).

Because our goal was to understand the effects of resampling-based inference
tests for PLS, we selected only some of the top reported, clinically relevant genetic
markers, consisting of 178 SNP’s. Because the work presented here is not concerned
with data interpretation, we skip the details of clinical relevance. Each SNP has a
major allele (e.g., A) which is the most frequent nucleotide (in a population) and a
minor allele (e.g., T ; rare in the population but required to be found in at least 5%
of the population to be considered worth exploring). Thus, in practice only three
variants for each location are used: the major homozygote (e.g., AA), the minor ho-
mozygote (e.g., T T ), and the heterozygote (e.g., AT ). Multivariate data sets of SNPs
are most often re-coded through a process of counting the number of minor alleles.
So, in our data: 0 represents the major allele homozygote (e.g., AA), 1 codes for the
heterozygote (e.g., AT ), and 2 represents the minor allele homozygote (e.g., TT ).
In most analyses, the SNPs are treated as quantitative data since most statistical
methods used rely upon quantitative measures. Because the assumptions of a quan-
titative coding scheme seem unrealistic, we have decided to use a qualitative coding
scheme and to consider that the values 0, 1, and 2 represent three different levels of
a nominal variable and to code each possible variants with a 3 by 1 vector of binary
variables (i.e., AA = [100], AT = [010], and T T = [001]).

The data were extracted from 756 subjects comprising three clinical groups
and each clinical group was further split by sex. This produced a total of six,
approximately equally populated, groups of subjects. This pattern of data represents

www.adni-info.org
pngu.mgh.harvard.edu/purcell/plink/
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a data analytic scenario with comparable numbers of observations (756) and
predictors (SNPs × variants = 178× 3 = 528). Here, the predictor data are bi-
nary and weakly correlated (Fig. 1B). The number of group/condition dimensions
is also small (six groups based on clinical diagnosis and sex).

2.1.3 Genes and Behavior: Behavioral Data

We extracted six behavioral measures from the same subjects as for the genetic
data. Once again, as the interpretation of the behavioral data is not important for
our simulations, we skip the details pertaining to the choice of behavioral measures.
This represents a scenario with a large number of observations (756), small number
of highly correlated predictors (six behavioral measures, see Fig. 1C), and a small
number of group/condition dimensions.

2.2 Simulation of Group/Condition Effects

We start with a real data set stacked in a standard manner as a two-dimensional
matrix X whose every row contains data for one subject (observation) in one condi-
tion ([2]). The rows are arranged such that observations are nested within condition
blocks, which are in turn nested within group membership. From X we extracted
two parameters: the covariance matrix C of the voxel space (covariance calculated
across observations) and the group/condition specific mean signal m of the predictor
variables across the real data observations. The mean signal m is further centered
by subtracting the grand mean of all groups and conditions. To generate comparable
simulated data with a controlled number of group/condition effects, we first decom-
posed m using a principal component analysis and then rebuilt the modified signal
(denoted m1) using only the first K principal components. This allowed us to con-
trol the number of expected group/condition effects. In the simulations presented
here, we chose K = 3 as the reasonable number of effects that can be expected with
this type of data. To create a simulated voxel data set similar to the real data, we
drew observations from a multivariate normal distribution with covariance C and
mean m1. However, we wanted to test how well we can detect reliable task effects
depending on the signal strength (m1 amplitude across voxels) and the noise distri-
bution. For this reason, we used the signal amplitude as a scalar parameter denoted
γ that was manipulated in order to vary the intensity of the signal as γ m1. In order
to explore the effects of noise we removed the signal from a proportion (denoted
np) of randomly selected voxels. To summarize, we designed a simulations scheme
where we controlled:

1. The number of expected group/condition effects (set to 3 for all simulations)
2. The signal strength measured by γ , where γ ∈ {0,0.5,1,3}
3. Percentage of noise-voxels (i.e., voxels for which m1 = 0) measured by np,

where np ∈ {80,40,10,0%}.
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2.3 Simulation of Correlation Effects

Once again we start with a real voxel data set X, with voxel covariance matrix C,
as above. We create simulated versions of the data by drawing observations from
a multivariate normal distribution with covariance C and zero mean vector. This
produces a matrix Y with same dimensions as the real data X. We then selected a
small set of voxels as seeds (i.e., we extracted columns of Y corresponding to the
selected voxels). Seed-PLS analyzes the correlation between Y and the seeds and
searches for the group/condition effects within the correlation structure which is
stacked by group and condition specificity in the same way as for task-PLS. In this
case, the strength of the signal reflects the strength of the correlations between the
columns of Y and the seeds. Note that the correlations are exactly 1 for the columns
corresponding to the seeds across all groups and conditions. In this scenario, we
manipulated the strength of the signal by permuting a random subset of rows of the
seed matrix, while keeping the voxel data matrix Y unperturbed. The percentage
of rows that were permuted, denoted pp, is inversely related to the strength of the
correlations: if only few rows are permuted (e.g., pp < 5%), the correlations change
only slightly; if all rows are randomly permuted (pp = 100%), all the correlations
are destroyed. In the results presented here, we tested a range of pp values with
pp ∈ {0%,30%,60%,100%}.

3 Split-Half Reliability

The reliability of the latent variables is implemented in a split-half resampling
framework similar to [5]. Here we give a brief description for the data driven PLS
methods. The overview of the algorithm is shown in Fig. 2. We start by first de-
composing the signal D (whether mean-centered group/condition mean signal in
task-PLS or correlation signal between predictors and responses in seed-PLS) us-
ing the singular value decomposition (SVD). Specifically, assuming that D is in a
group/condition by voxel format, then the SVD of DT is obtained as:

DT = USVT .

The columns of U store the left singular vectors (voxel patterns), the columns of
V store the right singular vectors (group/condition effects) and S is the diagonal ma-
trix of the singular values. In our framework, we will consider that a latent variable
���i comprises a matching set of right and left singular vectors (i-th column of U, and
V respectively) and singular value (i-th diagonal element of S). In standard permuta-
tion tests, the significance of a given LV is focused on the amplitude of the singular
value. However, in split-half reliability testing we are interested in the stability of the
pairings between left and right singular vectors. Therefore, we randomly split every
group of subjects and calculated the signals D1 and D2 by applying the same group
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Decompose signal with SVD

DT =  U  S  VT

U1 = D1
T V S-1

V1 = D1 U S-1

U2 = D2
T V S-1

V2 = D2 U S-1

Correlate U1 & U2 and V1 & V2

Mean correlation 
across splithalves

Ucorr   Vcorr

Split into 2 halves and project

S
plithalf resam

pling

Randomly permute data

pUcorr pVcorr

N
ull distribution

Compare against null distribution

Fig. 2: Diagram of the algorithm for split-half reliability testing

and condition specific averaging/correlation procedure as originally performed on
D, working with only half of the subjects. We projected the original matrices U and
V onto each half of D to obtain the corresponding half-sample matching pairings.
Specifically, we computed:

U1 = DT
1 VS−1 and U2 = DT

2 VS−1

V1 = D1US−1 and V2 = D2US−1

The correlations between projected left and right split-half patterns (i.e., correlation
between the matrices U1 and U2, and the matrices V1 and V2) are taken as mea-
sures of the correspondence between the voxel space and the V patterns, on one
hand, and group/condition membership and the U patterns, on the other hand. By
repeating this procedure many times, we obtain a robust estimate of split-half cor-
relations for both left and right singular vectors. Note that this procedure uses the
full sample to decompose the data structure into latent variables. This is particu-
larly important for weak signals, where a half-sample may not reveal the signal.
The purpose of the procedure is different from a standard split-half cross-validation,
where each half-sample is independently analyzed. Instead, our focus is to evalu-
ate the reliability of the associations—captured by the LV’s—between voxel pat-
terns and group/condition effects. In other words, our main question is: Given a
group/condition effect, how reliable is the corresponding voxel pattern? Would the
same group/condition effect links with a similar voxel pattern if we were to chose
a different set of subjects? In an analogous way, given a voxel pattern (left singular
vector), we want to estimate the reliability of the associated condition/group effect.
For example, in the analysis of genotype/phenotype associations, the SVD decom-
poses the correlation matrix into latent variables, where each latent variable links
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γ γ

γ γ

Fig. 3: Null-distribution for pUcorr and pVcorr. For illustration we chose the first
LV from two ERP-type simulations of task effects. The top row corresponds to the
“no signal” scenario with γ = 0. The bottom row corresponds to the simulation
with the most realistic signal strength and distribution, with γ = 1 and np = 0. The
red dot marks the split-half correlation of the original un-permuted data. The red
dotted line and red percent value indicate the corresponding percentile of the null
distribution. In both scenarios, the distributions are strongly skewed towards positive
values, however the pUcorr and pVcorr percentile values suggest rejection of the null
hypothesis for the realistic signal only

a particular weight from the SNPs with a particular weight of from the phenotype
measures. In this case, our split-half procedure tests the reliability of this link.

It is important to notice that the distribution of the correlations between projected
split-half patterns will be skewed even in a completely random data set. After all,
the original SVD decomposition reflects the full sample, so it is not surprising that,
on the average, the distribution of the values of the correlation between split halves
is biased towards positive values (see Fig. 3). To deal with this systematic bias, we
create a null distribution for the split-half correlations. This is done by randomly
permuting observations (i.e., the rows of X) and repeating the split-half correlation
estimation for each permuted data set. This allows us to estimate the probability of
surpassing the correlations from the original un-permuted data set. We denote these
probabilities by pUcorr and pVcorr and treat them as p-values that describe the stabil-
ity of voxel patterns associated with U and group/condition patterns associated with
V, respectively. In the present simulations, we performed 200 half-splits and 200
permutations to create the null distributions, and considered that a latent variable
was reliable when both probabilities were smaller than 0.05 (i.e., pUcorr < 0.05 and
pVcorr < 0.05).
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Table 1: Results for task-PLS simulations. For each of the 3 data types, the sig-
nal was constructed to have exactly 3 LVs, and its strength was manipulated with
the values of the parameters γ and np. For each simulated data set, we computed
two standard p-value estimates of LV significance, prot and pnonrot depending on
weather Procrustes rotation was used or not. In addition, we calculated p-values of
LV reliability estimates based on split-half resampling, pUcorr and pVcorr

γ = 0 γ = 0.5 γ = 1 γ = 3

np(%)np(%)np(%) 80 40 10 0 80 40 10 0 80 40 10 0

E
R

P

LV1

prot .01 0.03 0.01 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.01 0.01 0.01
pnonrot 0.46 0.35 0.27 0.20 0.17 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pUcorr 0.34 0.35 0.23 0.17 0.12 0.20 0.01 0.00 0.00 0.00 0.00 0.00 0.00
pV corr 0.10 0.04 0.04 0.01 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LV2

prot 0.41 0.17 0.03 0.01 0.01 0.04 0.00 0.01 0.00 0.01 0.00 0.00 0.01
pnonrot 0.78 0.29 0.03 0.01 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pUcorr 0.78 0.41 0.08 0.02 0.01 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pV corr 0.18 0.04 0.02 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LV3

prot 0.72 0.62 0.41 0.34 0.31 0.35 0.11 0.06 0.04 0.01 0.01 0.00 0.01
pnonrot 0.50 0.34 0.10 0.02 0.04 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pUcorr 0.58 0.29 0.07 0.01 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pV corr 0.97 0.90 0.78 0.10 0.07 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00

SN
P

LV1

prot 0.21 0.14 0.00 0.01 0.00 0.02 0.01 0.01 0.01 0.01 0.00 0.01 0.00
pnonrot 0.48 0.40 0.13 0.04 0.02 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pUcorr 0.65 0.56 0.12 0.04 0.02 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pV corr 0.97 0.86 0.97 0.93 0.95 0.83 0.11 0.04 0.04 0.00 0.00 0.00 0.00

LV2

prot 0.24 0.29 0.10 0.07 0.04 0.14 0.01 0.01 0.01 0.01 0.00 0.01 0.00
pnonrot 0.63 0.53 0.16 0.04 0.04 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pUcorr 0.34 0.33 0.23 0.15 0.09 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pV corr 0.82 0.83 0.26 0.32 0.12 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00

LV3

prot 0.55 0.48 0.54 0.47 0.50 0.14 0.07 0.01 0.01 0.00 0.01 0.01 0.01
pnonrot 0.15 0.20 0.22 0.21 0.23 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00
pUcorr 0.47 0.40 0.54 0.41 0.51 0.08 0.01 0.00 0.00 0.00 0.00 0.00 0.00
pV corr 0.63 0.53 0.46 0.42 0.42 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00

B
eh

av
io

r

LV1

prot 0.01 0.00 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.02 0.00 0.01 0.00
pnonrot 0.18 0.17 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.18 0.00 0.00 0.00
pUcorr 0.28 0.28 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.19 0.00 0.00 0.00
pV corr 0.17 0.13 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.17 0.00 0.00 0.00

LV2

prot 0.56 0.51 0.18 .04 0.26 0.43 0.12 0.05 0.17 0.07 0.09 0.21 0.10
pnonrot 0.26 0.21 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.01 0.00
pUcorr 0.23 0.17 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pV corr 0.20 0.16 0.00 0.14 0.01 0.07 0.00 0.07 0.00 0.00 0.00 0.00 0.00

LV3

prot 0.91 0.92 0.71 0.87 0.74 0.74 0.78 0.87 0.72 0.63 0.72 0.42 0.51
pnonrot 0.51 0.51 0.07 0.34 0.10 0.27 0.17 0.28 0.07 0.01 0.00 0.00 0.00
pUcorr 0.31 0.21 0.02 0.21 0.08 0.12 0.02 0.04 0.23 0.01 0.00 0.00 0.00
pV corr 0.47 0.42 0.07 0.17 0.01 0.27 0.04 0.08 0.01 0.13 0.00 0.00 0.00
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Table 2: Results for seedPLS simulations. For each of the 3 datatypes correlation
strengths were manipulated with parameter pp. For each simulated data set, we
computed two standard p-value estimates of the LV significance, prot and pnonrot

depending on wether Procrustes rotation was used or not. In addition we calculated
p-values of LV reliability estimates based on split-half resampling, pUcorr and pVcorr

pp(%)pp(%)pp(%) 100 60 30 0
E

R
P

LV1

prot 0.00 0.01 0.01 0.00
pnonrot 0.15 0.00 0.00 0.00
pUcorr 0.27 0.00 0.00 0.00
pV corr 0.34 0.02 0.01 0.00

LV2

prot 0.03 0.04 0.12 0.04
pnonrot 0.17 0.24 0.86 0.14
pUcorr 0.32 0.06 0.94 0.04
pV corr 0.52 0.30 0.55 0.06

LV3

prot 0.15 0.23 0.45 0.14
pnonrot 0.58 0.60 0.88 0.14
pUcorr 0.12 0.20 0.81 0.01
pV corr 0.85 0.16 0.20 0.21

SN
P

LV1

prot 0.01 0.01 0.00 0.01
pnonrot 0.32 0.01 0.00 0.00
pUcorr 0.07 0.00 0.00 0.00
pV corr 0.96 0.79 0.00 0.00

LV2

prot 0.00 0.01 0.00 0.01
pnonrot 0.81 0.01 0.00 0.00
pUcorr 0.12 0.01 0.00 0.00
pV corr 0.82 0.07 0.00 0.00

LV3

prot 0.12 0.01 0.00 0.00
pnonrot 0.84 0.05 0.00 0.00
pUcorr 0.99 0.32 0.00 0.00
pV corr 0.01 0.70 0.00 0.00

B
eh

av
io

r

LV1

prot 0.07 0.00 0.01 0.01
pnonrot 0.85 0.00 0.00 0.00
pUcorr 0.91 0.00 0.00 0.00
pV corr 0.62 0.22 0.00 0.00

LV2

prot 0.28 0.00 0.00 0.01
pnonrot 0.20 0.00 0.00 0.00
pUcorr 0.32 0.00 0.00 0.00
pV corr 0.10 0.00 0.00 0.00

LV3

prot 0.74 0.36 0.78 0.90
pnonrot 0.69 0.02 0.78 0.86
pUcorr 0.41 0.05 0.66 0.41
pV corr 0.82 0.02 0.46 0.26
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4 Results and Discussion

Each of the three real data sets were used to generate simulations for the two flavors
of PLS. In the case of task-PLS, simulations were designed to have exactly three
significant LVs, however the strength of the signal captured by these LVs was varied
from no signal (γ = 0) to weak signal (e.g, γ = 0.5,np = 40%) and strong signal
(γ = 3,np= 0%). Simulations for seedPLS were simpler, where partial permutations
of the seed data resulted in a reduction of the initial correlations, going from no
reduction (pp = 0%) to more reduction (pp = 30%,60%) and full reduction (pp =
100%). For each simulation, we calculated two standard p-value estimates of the
LV significance, prot and pnonrot depending on weather Procrustes rotation was used
or not. In addition, we calculated p-values of LV reliability estimates based on split-
half resampling, pUcorr and pVcorr. The results are presented in Tables 1 and 2.
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The Stability of Behavioral PLS Results
in Ill-Posed Neuroimaging Problems

Nathan Churchill, Robyn Spring, Hervé Abdi, Natasa Kovacevic,
Anthony R. McIntosh, and Stephen Strother

Abstract Behavioral Partial-Least Squares (PLS) is often used to analyze ill-posed
functional Magnetic Resonance Imaging (f MRI) datasets, for which the number of
variables are far larger than the number of observations. This procedure generates a
latent variable (LV) brain map, showing brain regions that are most correlated with
behavioral measures. The strength of the behavioral relationship is measured by the
correlation between behavior and LV scores in the data. For standard behavioral PLS,
bootstrap resampling is used to evaluate the reliability of the brain LV and its behav-
ioral correlations. However, the bootstrap may provide biased measures of the gen-
eralizability of results across independent datasets. We used split-half resampling to
obtain unbiased measures of brain-LV reproducibility and behavioral prediction of
the PLS model, for independent data. We show that bootstrapped PLS gives biased
measures of behavioral correlations, whereas split-half resampling identifies highly
stable activation peaks across single resampling splits. The ill-posed PLS solution
can also be improved by regularization; we consistently improve the prediction ac-
curacy and spatial reproducibility of behavioral estimates by (1) projecting f MRI

data onto an optimized PCA basis, and (2) optimizing data preprocessing on an in-
dividual subject basis. These results show that significant improvements in general-
izability and brain pattern stability are obtained with split-half versus bootstrapped
resampling of PLS results, and that model performance can be further improved by
regularizing the input data.
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Key words: f MRI, Behavioral PLS, Bootstrap, Split-half resampling, Prediction,
Reproducibility, PCA

1 Introduction

A central goal of functional magnetic resonance imaging (f MRI) studies of the hu-
man brain is to identify networks of brain areas that are tightly linked to measures
of behavior [1, 2]. This problem is typically highly ill-posed and ill-conditioned,
with the number of variables P being very large (i.e. more than 20,000 voxels in
brain images), and the number of data samples N being quite small (i.e. typically
less than one hundred subjects, with behavioral measures and brain images), a con-
figuration of data known as the “P�N” problem. To address this issue, two general
approaches have emerged in the neuroimaging literature to measure behavioral rela-
tions with f MRI. The first approach defines a priori a small number of brain regions
expected to relate to the behavior of interest. This provides a much better condi-
tioned problem, because the number of brain regions is now roughly of the same
order as the number of observations (P ≈ N). The second approach uses most of
the available voxels, and attempts to find the brain locations that best reflect the be-
havioral distribution in a data-driven multivariate analysis. This method attempts to
control the ill-conditioned nature of the problem, by using resampling and regular-
ization with dimensionality reduction techniques. A leading approach of this second
type is behavioral PLS, as provided in the open-source MATLAB™“PLS package”
developed by McIntosh and et al. [3].

The closely related problem of building discriminant or so called “mind reading”
approaches has also been developed and explored in the neuroimaging community
[4–7]. When defined as a data-driven multivariate problem with large P, mind read-
ing is also ill-conditioned. Resampling techniques have been developed to control
for instability and optimize the reliability of the voxels most closely associated with
the discriminant function [6, 9, 10]. These approaches use cross-validation forms of
bootstrap resampling [11] or split-half resampling [6]. Split-half resampling is par-
ticularly interesting, because it has been shown theoretically to provide finite sam-
ple control of the error rate of false discoveries in general linear regression methods
when applied to ill-posed problems, provided certain exchangeability conditions are
met [12].

Behavioral PLS and linear discriminant analysis belong to the same linear multi-
variate class of techniques, as both are special cases of the generalized singular value
decomposition or generalized eigen-decomposition problem [20]. Specifically, let Y
be a N×K matrix of K behavioral measures or categorical class labels for N sub-
jects, and X be a N×P matrix of brain images, where P� N. The eigen-solution
of expression:

(YTY)−1/2YTX(XTX)−1/2 (1)
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reflects the linear discriminant solution for categorical class labels in Y [13]. When
P > N, (XTX) will be singular and therefore (XTX)−1/2 cannot be computed with-
out some form of regularization. When X and Y are centered and normalized
(i.e. each column of these matrices has a mean of zero and a norm of 1), and
(XTX) = (YTY) = I (i.e. X and Y are orthogonal matrices), then Eq. 1 corresponds
to the general partial least squares correlation approach defined in Krishnan et al.
[3, 14], for which behavioral PLS with Y containing subject behavioral scores is a
special case. Given the similar bivariate form of PLS and linear discriminants, the
goal of this study was to use the split-half techniques developed in the discriminant
neuroimaging literature to test the stability of solutions from behavioral PLS, which
uses standard bootstrap resampling methods as implemented in the neuroimaging
PLS package [3] (code located at: www.rotman-baycrest.on.ca/pls/source/).

2 Methods and Results

2.1 Functional Magnetic Resonance Imaging (fMRI) Data Set

Twenty young normal subjects (20–33 years, 9 male) were scanned with f MRI while
performing a forced-choice, memory recognition task of previously encoded line
drawings [15], in an experiment similar to that of Grady et al. [16]. We used a 3 Tesla
f MRI scanner to acquire axial, interleaved, multi-slice echo planar images of the
whole brain (3.1× 3.1× 5 mm voxels, TE/TR=30/2000 ms). Alternating scanning
task and control blocks of 24 s were presented 4 times, for a total task scanning time
per subject of 192 s. During the 24 s task blocks, every 3 s subjects saw a previously
encoded figure side-by-side with two other figures (semantic and perceptual foils)
on a projection screen, and were asked to touch the location of the original figure
on an f MRI-compatible response tablet [17]. Control blocks involved touching a
fixation cross presented at random intervals of 1–3 s.

The resulting 4D f MRI time series were preprocessed using standard tools from
the AFNI package, including rigid-body correction of head motion (3dvolreg),
physiological noise correction with RETROICOR (3dretroicor), temporal detrend-
ing using Legendre polynomials and regressing out estimated rigid-body motion pa-
rameters (3dDetrend, see [8] for an overview of preprocessing choices in f MRI).
For the majority of results (see Sects. 2.2 and 2.3), we preprocessed the data using a
framework that optimizes the specific processing steps independently for each sub-
ject, as described in [18, 19], within the split-half NPAIRS resampling framework [6].
In Sect. 2.4, we provide more details of pipeline optimization, and demonstrate the
importance of optimizing preprocessing steps on an individual subject basis in the
PLS framework.

We performed a two-class linear discriminant analysis separately for each dataset
(Class 1: Recognition scans; Class 2: Control scans), which produced an optimal
Z-scored statistical parametric map [SPM(Z)] per subject. For each subject, the
Z-score value of each voxel reflects the extent to which this voxel’s brain location
contributes to the discrimination of recognition vs. control scans, for that subject.

www.rotman-baycrest.on.ca/pls/source/
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2.2 Split-Half Behavioral PLS

The 20 subjects’ SPM(Z)s were stacked to form a 20× 37,284 matrix X as de-
scribed in Eq. 1, and a 20×1 y vector was formed from the differences of the mean
(Recognition−Control) block reaction times per subject (in milli-seconds). After
centering and normalizing X and y, a standard behavioral PLS was run, as outlined
in [3], with 1,000 bootstrap replications. The resulting distribution is reported in
Fig. 1 (left) under “Bootstrapped PLS.” For each bootstrap sample, a latent variable
(LV) brain map was also calculated. At each voxel, the mean was divided by the
standard error on the mean (SE), computed over all bootstrap measures; this is re-
ported as a bootstrap ratio brain map SPMboot (horizontal axes of Fig. 3).

The behavioral PLS procedure was modified to include split-half resampling as
follows. After centering and normalizing X and y, subjects were randomly assigned
1,000 times to split-half matrices X1 and X2, and behavioral vectors y1 and y2.
For each split-half matrix/vector pair, we obtained the projected brain pattern LV
defined by ei = yT

i Xi that explained the most behavioral image variance for i =
1,2. The correlation r(i,train) = ρ(yi,XieTi ) reflects the correlation between behavior
and expression of the latent brain pattern ei, for each split-half training set. The
distribution of the 2,000 split-half r(i,train) values is plotted in Fig. 1 (middle). We
also obtained an independent test measure of the behavioral prediction power of
each ei by calculating r(i,test) = ρ(y j �=i,X j �=ieTi ) for i and j = 1,2. The distribution
of these 2,000 r(i,test) values is plotted in Fig. 1(right). The test r(i,test) behavioral
correlations are consistently lower than both training and bootstrap estimates. The
reproducibility of the two split-half brain patterns may also be measured as the
correlation of all paired voxel values rspatial = ρ(e1,e2); this measures the stability
of the latent brain pattern across independent datasets. The overall reproducibility
of this pattern is also relatively low but consistently greater than zero, with median
rspatial of 0.025 (ranging from 0.014 to 0.043; plotted in Fig. 4).

Figure 2 plots the median latent variable (LV) score of each subject, as training-
data (XieTi scores, Fig. 2a) and as test-data (X j �=ieTi scores, Fig. 2b); we plotted the
median LV scores vs. behavior over the 1,000 resamples. The median training scores
show a consistently stronger linear trend than for test. In addition, there is a subject
(red circle) whose brain-behavior relation cannot be predicted by the other subjects’
data in the test space (it is a significant outlier by Cooks D test, with statistic d= 0.90
exceeding the outlier threshold 4/N [21]). By comparison, in the training space, this
subject is not a significant outlier.

The split-half brain patterns e1 and e2 can also be used to estimate a behav-
ioral SPM that is robust to subject heterogeneity. As described in [6], this is done
by normalizing each ei to mean zero and variance one, and then projecting the
pairwise voxel values onto the line of identity (the first component of a principal
component analysis (PCA) on the scatterplot of e1 vs. e2 voxel values), which gives
a signal-axis estimate: esignal = (e1 + e2)/

√
2. The orthogonal, minor-axis projec-

tion (second component of a PCA on the scatter-plot), forms the noise axis. This
measures uncorrelated, non-reproducible signal at each voxel, giving noise vec-
tor: enoise = (e1− e2)/

√
2. This is used to estimate a reproducible Z-scored map
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Fig. 1: Behavioral correlation distributions for standard bootstrapped behavioral
PLS (left), and split-half training (middle) and test (right) distributions. Distributions
are plotted as box-whisker plots with min.− max. whisker values, a 25th–75th per-
centile box and the median (red bar); results shown for 1,000 bootstrap or split-half
resampling iterations

rSPM(Z)split = esignal/SD(enoise), where SD(enoise) provides a single spatially global
noise estimator. The average of the 1,000 rSPM(Z)split voxel values are plotted on
the vertical axis in Fig. 3a, against SPMboot values. The rSPM(Z)split shows gener-
ally lower signal values than SPMboot, with a nonlinear relationship. However, this
difference is partly a function of the global versus local noise estimators. We can
instead estimate the mean esignal value at each voxel, and normalize by the SD on
enoise for each voxel (each computed across 1,000 resamples), generating voxel-wise
estimates of noise in the same manner as SPMboot. This rSPM(Z) is plotted against
SPMboot in Fig. 3b, demonstrating a strong linear trend, albeit with increased scatter
for high-signal voxels. This scatter is primarily due to differences in the local noise
estimates: the mean bootstrap LV and esignal patterns are highly consistent (correla-
tion equal to 0.99), whereas the local noise estimates are more variable between the
two methods (plotted in Fig. 3c; correlation equal to 0.86).

2.3 Behavioral PLS on a Principal Component Subspace

For standard behavioral PLS, we project the behavioral vector y directly onto X
(the subject SPMs) to identify the latent basis vector e = yTX. However, taking
our cue from the literature on split-half discriminant analysis in f MRI (see, e.g.
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Fig. 2: Median subject behavioral LV scores are plotted against difference in reac-
tion time between (Task-Control) experimental conditions. The error bars give upper
and lower quartile ranges on LV scores, for each subject (for 1,000 split-half resam-
ples). Results are shown for (a) the training-space LV scores, and (b) the test-space
LV scores. The subject represented by a red dot is a significant outlier in test-space,
based on Cook’s D statistic (see text for details)
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Fig. 3: Scatter plot of pairs of voxel SPM values: we compare standard bootstrapped
behavioral PLS analysis producing (mean voxel salience)/(standard error), to split-
half signal/noise estimates. This includes (a) standard NPAIRS estimation of voxel
signal, normalized by global noise standard deviation (Z-scored) for each resample,
and (b) voxel signal, normalized by standard error (bootstrap ratios) or standard
deviation (split-half Z-scores) estimated at each voxel. (c) plot of voxels’ standard
error (bootstrap) against standard deviation (split-half). Results are computed over
1,000 split-half/bootstrap resamples
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[7, 10, 18, 19, 22]), we can regularize and de-noise the data space in which the
analysis is performed, by first applying PCA to X, and then running a PLS analysis
on a reduced PCA subspace.

The singular value decomposition [20] produces X = USVT, where U is a set
of orthonormal subject-weight vectors, S is a diagonal matrix of singular values,
and V is a set of orthonormal image basis vectors. We represent X in a reduced k-
dimensional PCA space (k≤ N), by projecting onto the subset of 1 to k image bases,
V(k) = [V1V2 . . .Vk], giving Q(k) = XV(k). We performed PLS analysis on Q(k), by
normalizing and centering subject scores of each PC-basis, and then obtaining the
projection wi = yT

i Qi that explained the most behavior variance in the new PC basis.

Fig. 4: (a) Plot of median predicted behavioral correlation rtest and spatial repro-
ducibility rspatial of the LV brain map, for PLS performed on a PCA subspace of
the subject data (blue). These subspaces include the 1 to k Principal Components
(PCs), where we vary (1 ≤ k ≤ 10). The (rspatial, rtest) values are plotted for each k
(subspace size) as points on the curve; a subspace of PCs 1–4 simultaneously op-
timized (rspatial, rtest), circled in black. We also plot the median (rtest,rspatial) point,
estimated directly from matrix X for reference (red circle). (b) Plots of split-half
Z-scored SPMs with global noise estimation, for no PCA estimation (red), and an
optimized PCA dimensionality k = 4 (blue). Positive Z-scores indicate positive cor-
relation with the behavioral measure of reaction time, and negative Z-scores indicate
negative correlation. Voxel values are computed as the mean over 1,000 split-half
resamples, with spatially global noise estimation from each split-half pair

The predicted behavioral correlation is measured by projecting the test data onto
the training PC-space, and then onto wi, giving behavioral correlations r(i,test) =
ρ(y j �=i,wi(X j �=iVi). We also obtained eigen-images by projecting back onto the

voxel space (i.e. ei = wiV
(k)
i ), to compute the rSPM(Z)split and reproducibility,
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rspatial. The resulting median behavioral prediction r(test) and reproducibility r(spatial)
are plotted in Fig. 4a, as a function of the number of PC bases k. From this curve,
we identify the PC subspace k = 4, that maximizes both rtest and rspatial. Note that
the median rtest and rspatial are consistently higher when performed on a PCA basis
than PLS performed directly on X, for all subspace sizes k = 1 . . .10. The predicted
behavioral correlation is generally higher for the k = 4 PC subspace than PLS per-
formed directly on X (median Δrtest = 0.17; increased for 891 of the 1,000 resam-
ples), as is spatial reproducibility (Δrspatial = 0.05; increased for all 1,000 resam-
ples). Figure 4b depicts slices from the mean rSPM(Z)s of PLS performed directly
on X (top) and in an optimized PC subspace (bottom). The PCA optimization tends
to increase mean Z-scores in the same areas of activation previously identified by
voxel-space results, indicating that the optimized PC basis increases sensitivity of
the PLS model to the same underlying set of brain regions.

Fig. 5: Plot showing the reliability of peak voxel values. (top) peak LV values are
shown across standard PLS bootstrap replications. Peak voxels of the split-half re-
producible rSPM(Z)s, with global noise estimated at each split, are shown across
resamples for (middle) voxel-space estimation, and (bottom) estimation on an opti-
mized PCA subspace. For each of the 1,000 bootstrap/split-half resamples, we iden-
tified the top 5% highest-signal voxels (LV values for bootstrap estimation; Z-scores
for split-half estimation). This plot measures the fraction of resamples where each
voxel is part of the top 5%

In Fig. 5, we depict the stability of bootstrap and split-half resampling esti-
mates. We compared the reliability of peak voxels across bootstrap LVs (top), rela-
tive to split-half rSPM(Z)split estimates with global noise estimation; the split-half
model estimates a Z-scored SPM from each resampling split. Results are shown for
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rSPM(Z)split estimated directly from data matrix X (middle), and rSPM(Z)split es-
timated from the optimized PCA subspace of X, k = 4 PCs (bottom). We measured
peak signal as the top 5% of voxel signal values, for each resample (bootstrap-
estimated LV scores or split-half-estimated Z-scores). At each voxel, we measured
the fraction of resamples where it was a peak voxel (i.e. among the top 5%). For
bootstrap LVs, only 2 of 37,284 voxels (less than .001%) were active in more than
95% of resamples, compared to split-half Z-scored estimates of 324 voxels (0.87%;
PLS computed on X) and 343 voxels (0.92%; PLS on an optimized PCA basis).
This demonstrates that although rSPM(Z)split with global noise estimation produces
lower mean signal values than SPMboot (Fig. 3a), the location of peak rSPM(Z)split

values are highly stable across resampling splits. We can therefore identify reliable
SPM peaks with relatively few resampling iterations.

2.4 Behavioral PLS and Optimized Preprocessing

For results in Sects. 2.2 and 2.3, we preprocessed the f MRI data to correct for noise
and artifact, as outlined in [18, 19]. For this procedure, we included/excluded every
combination of the preprocessing steps: (1) motion correction, (2) physiological
correction, (3) regressing head-motion covariates and (4) temporal detrending with
Legendre polynomial of orders 0–5, evaluating 23× 6 = 48 different combinations
of preprocessing steps (“pipelines”).

For each pipeline, we performed an analysis in the NPAIRS split-half framework
[6], and measured spatial reproducibility and prediction accuracy (posterior proba-
bility of correctly classifying independent scan volumes). We selected the pipeline
that minimized the Euclidean distance from perfect prediction and reproducibility:

D =
√
(1− reproducibility)2 +(1− prediction)2, (2)

independently for each subject. This may be compared to the standard approach in
f MRI literature, which is to apply a single fixed pipeline to all subjects. We compared
the current “individually optimized” results with the optimal “fixed pipeline,” of
motion correction and 3rd-order detrending; this was the set of steps that, applied to
all subjects, minimized the D metric across subjects (details in [18]).

Figure 6 compares fixed pipeline results (red) to individually optimized data
(blue), for PLS on a PCA subspace. Figure 6a show, for both pipelines, median be-
havioral prediction r(test) and reproducibility r(spatial) plotted as a function of PCA

dimensionality. Data with fixed preprocessing (red) optimized r(test) and r(spatial) at
PC #1, a lower dimensionality than individually optimized preprocessing (blue), at
PCs #1–4. For the optimized PC bases (circled in black), individual pipeline opti-
mization improves over fixed pipelines with median Δr(test) = 0.11 (increased for
898 out of the 1,000 resamples), and Δr(spatial) = 0.06 (increased for 810 out of the
1,000 resamples). Figure 6b shows sample slices from the mean Z-scored SPMs, in
the optimized PC subspaces. Individual subject pipeline optimization generally pro-
duces higher peak Z-scores, and sparser, less noisy SPMs, than fixed preprocessing.
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Fig. 6: (a) Plot of median predicted behavioral correlation rtest and spatial repro-
ducibility rspatial of the LV brain map for PLS, when performed on a PCA subspace
of the subject data. Results are plotted for data preprocessed with a fixed set of steps
(red; all subjects have the same preprocessing applied), and with preprocessing in-
dividually optimized for each subject (blue; this is the pipeline used for all previous
results). For both datasets, subspaces include the 1 to k principal components (PCs),
where we vary (1 < k < 10). The (rspatial, rtest) values are plotted for each k (sub-
space size) as points on the curve; we circled in black the PC-space that optimized
(rspatial, rtest) for each pipeline set. (b) Plots of split-half Z-scored SPMs with global
noise estimation under the optimal PC subspace, for the optimal fixed pipeline (red;
PC #1), and individually optimized pipelines (blue; PCs #1–4). Positive Z-scores
indicate areas of positive correlation with the behavioural measure (reaction time),
and negative Z-scores indicate negative correlation. Voxel values are computed as
the mean over 1,000 split-half resamples

3 Discussion and Conclusions

The results presented in Fig. 1 indicate that bootstrapping behavioral PLS values
may result in a large upward bias in estimated behavioral correlation values (Fig. 1,
left) that is similar to the prediction biases encountered from training sets (Fig. 1,
middle) in training-test frameworks such as split-half resampling. Based on our prior
experience with such prediction models, this upward bias is caused by over-fitting
a low-dimensional categorical or behavioral vector in the high dimensional space
spanned by the brain images, without appropriate model regularization. Therefore,
the measured correlations from bootstrapped behavioral PLS apply only to the data
set used for their estimation and cannot be generalized. In contrast, the much lower
split-half test estimates of behavioral correlation in Fig. 1 (right) are generalizable
but are potentially biased downwards, being based on relatively small training/test
groups of only 10 subjects.
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Non-generalizable training bias is also reflected in the plots of median LV scores
vs. behavioral measures, in Fig. 2. If the scores are computed from the training-
space estimates, we obtain a stronger linear trend and less variability across splits,
compared to independent test data projected onto the training basis. As shown in
Fig. 2, plotting the test-space scores may also reveal potential prediction outliers
that are not evident in the training plots.

The Fig. 3a plot also shows that bootstrapped peak SPM signals are consistently
higher than standard split-half global Z-scoring. However, Fig. 3b shows that on
this is primarily a function of the different noise estimators, as the voxel-wise, split-
half noise estimation SPM is highly correlated with the bootstrap estimated SPM.
Both of the scatter-plots show a strong monotonic relation between SPMboot and the
rSPM(Z)s, indicating that regardless of the estimation procedure, approximately
the same spatial locations drive both bootstrap and split-half analyses. Even for
voxel-wise noise estimation, the difference between split-half and bootstrap SPMs
is primarily driven by the local noise estimates (plotted in Fig. 3c), whereas mean
signal values are highly similar.

Figure 4 shows that the original X data space can be better regularized and sta-
bilized, by projecting data onto a PC subspace prior to analysis. By adapting the
number of PC dimensions, we trace out a behavioral correlation vs. reproducibility
curve as a function of the number of PCs, similar to the prediction vs. reproducibil-
ity curves observed in discriminant models [10, 22]. These results highlight, again,
the ill-posed nature of the PLS data-analysis problem, and the importance of reg-
ularizing f MRI data. We also note that even a full-dimensionality PC-space model
(e.g. PCs 1–10 included in each split-half) outperforms estimation directly on the
matrix X. The PCA projects data onto the bases of maximum variance, prior to stan-
dard PLS normalization (giving zero mean and unit variance to scores of each PC
basis). The superior performance of PCs 1–10 over no PC basis (Fig. 4) indicates
that the variance normalization in voxel space may significantly limit the predictive
generalizability of behavioral PLS results for some analyses.

Figure 5 demonstrates the advantages of split-half resampling with global noise
estimation. For each split, we generate a single Z-scored rSPM(Z), for which peak
voxels tend to be highly consistent across rSPM(Z)s of individual resampling splits.
This allows us to measure voxel Z-scores on a little as one resampling split. The
stability of the peak activations also allows us to identify reliable brain regions from
a single split, which is not available to voxel-wise bootstrap estimation. The cross-
validation framework is therefore particularly useful when only limited f MRI data is
available, and has been previously used to optimize preprocessing in brief task runs
of less than 3 min in length (e.g. [18, 19]).

The results of Fig. 6 compared data with preprocessing choices optimized on an
individual subject basis, relative to the standard f MRI approach of using a single
fixed pipeline. Results indicate that optimizing preprocessing choices on an individ-
ual subject basis can significantly improve predicted test correlation and the spatial
reproducibility of LV maps in behavioral PLS. Note that pipeline optimization was
performed independently of any behavioral measures, as we chose preprocessing
steps to optimize SPM reproducibility and prediction accuracy of the linear dis-
criminant analysis model. These results demonstrate that improved preprocessing
may help to better detect brain-behavior relationships in f MRI data.
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Two-Step PLS Path Modeling Mode B:
Nonlinear and Interaction Effects Between
Formative Constructs

Alba Martı́nez-Ruiz and Tomas Aluja-Banet

Abstract A two-step PLS path modeling MODE B procedure is implemented to
estimate nonlinear and interaction effects among formative constructs. The proce-
dure preserves the convergence properties of PLS MODE B with centroid scheme
(Wold’s algorithm) and offers a way to build proper indices for linear, nonlinear
and interaction terms, all of which are unobservable, and to estimate the relation-
ships between them. A Monte Carlo simulation study is carried out in order to pro-
vide empirical evidence of its performance. Linear, nonlinear and interaction effects
are underestimated. Accuracy and precision increase by increasing the sample size.
Significant nonlinear and interaction effects and an increase in the predictability
of models are detected with medium or large sample sizes. The procedure is well-
suited to estimate nonlinear and interaction effects in structural equation models
with formative constructs and few indicators.

Key words: Partial least squares path modeling, MODE B, Nonlinear effects,
Interaction effects, Monte Carlo simulation

1 Introduction

Wold’s PLS-MODE-B algorithm with centroid scheme is a consistent method for
building a sequence of unobservable variables—also called constructs—for struc-
tural equation models (SEMs) with formative blocks of variables. Overlapping
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successive iterations, Wold’s algorithm uses the latest estimates of the constructs
available at each iteration to compute the unobservable indices [4, 14, 15]. Once
constructs are obtained, the PLS path modeling procedure estimates linear rela-
tionships among unobservables using multiple regression. Mathes (1993) [11] has
shown that “the PLS estimation of MODE B with centroid weighting scheme is a
critical point of the function sum of absolute correlations of the adjacent latent vari-
ables in the structural systems” (p. 235). Hanafi (2007) [4] has proven for Wold’s
implementation that PLS MODE B with centroid weighting scheme is monotonically
convergent.

In a PLS framework, Jakobowicz (2007) [8] and Henseler (2012) [6] have
addressed nonlinearities. Jakobowicz has studied PLS-MODE-A SEMs and Henseler
PLS-MODE-C SEMs.1 The main idea of Jakobowicz is to transform nonlinear vari-
ables into linear variables using monotonic B-spline transformations and alternat-
ing least squares (ALS). All exogenous construct of an endogenous unobservable
variable are transformed such that the square multiple correlation coefficient of
this endogenous construct is maximized. The ALS procedure is used to estimate
the parameters of the monotonic B-spline function and the path coefficients for
the inner model. On the other hand, Henseler compares the hybrid, product indi-
cator, two-stage, and orthogonal approaches for estimating the quadratic effect of
an exogenous formative construct on an endogenous construct. The author recom-
mends the hybrid approach—the original solution of Wold [15]—that computes the
quadratic construct in the iterative stage of the PLS algorithm. Both, Jakobowicz’s
and Henseler’s approaches, require the modification of the PLS algorithm. More-
over, and as Jakobowicz has pointed out, in his approach the inner relationships are
obtained maximizing the explained variance of the endogenous construct which is
supposed to have nonlinear relationships with other exogenous constructs, but not
considering in the same manner other endogenous unobservable variables included
in the same model.

In this paper, we are interested in estimating the effect of a nonlinear or interac-
tion term in a endogenous construct, and so far, there is no evidence for assessing
whether PLS-MODE-B is well-suited for (1) building nonlinear and interaction terms
from formative constructs and for (2) estimating the structural relationships between
them and an endogenous construct. We have implemented a two-step PLS path mod-
eling with MODE B (TsPLS) procedure to estimate nonlinear and interaction effects
in SEMs with formative outer models. The procedure considers the score estimation
of linear terms using the PLS-MODE-B algorithm with centroid scheme (step one).
Hence, the TsPLS procedure preserves the convergence properties of Wold’s algo-
rithm and offers a way to build proper indices for linear, nonlinear and interaction
terms, all of which are unobservable. Next, scores of nonlinear and interaction terms
are directly computed from linear terms (step two). Finally, the dependent construct
is regressed on the linear, nonlinear and interaction unobservable terms.

The TsPLS procedure may be proper to estimate nonlinear and interaction effects
in SEMs with formative constructs in information systems [1], marketing and

1 “The PLS algorithm is called PLS-MODE-C if each of Modes A and B is chosen at least one in the
model” [15, p. 10].
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business research [5, 9], among others. We describe the TsPLS procedure in Sect. 2.
To assess how well the TsPLS procedure detects the presence or absence of nonlinear
and/or interaction effects between formative constructs, a Monte Carlo simulation
study is designed and implemented (Sect. 3). Section 4 reports the results and we
conclude the paper with some final remarks in Sect. 5.

2 Two-Step PLS Path Modeling Mode B (TsPLS) Procedure

For considering nonlinearities in a PLS SEM, we have replaced the linear model that
relates the unobservable variables by a linear polynomial model. Thus, quadratic
and cross-product terms of the constructs are introduced in the relationship between
exogenous and endogenous unobservable variables. For instance, if ξ1, ξ2, and ξ3

are exogenous formative constructs and η is an endogenous formative construct,
the following nonlinear and interaction terms may be related to η : ξ 2

2 and ξ1ξ3.
Equation (1) describes the structural relationship between the dependent construct
and the linear and nonlinear unobservable terms

η = β j0 +∑
j

β jξ j +∑
j

α jξ 2
j +∑

j
∑

l

γ jlξ jξl + ζ (1)

where β j, α j, and γ j are path coefficients and ζ is the disturbance term. There
is no linear relationship between predictor and residual, that is, E(η/ξ j) =

∑ j β jξ j +∑ j α jξ 2
j +∑ j ∑l γ jlξ jξl . Thus, this condition implies that E(ζ/∀ξ j) = 0,

E(ζ/∀ξ 2
j )= 0, E(ζ/∀ξlξ j)= 0, cov(ζ ,ξ j)= 0, cov(ζ ,ξ 2

j )= 0 and cov(ζ ,ξlξ j) = 0.
Each linear construct ξ j is formed by a set of manifest variables as a linear

function of them plus a residual (Eq. (2)). The weights π ji determine the extent to
which an indicator contributes to the formation of a construct. Each block of man-
ifest variables may be multidimensional. The residual δ has a zero mean, and it is
uncorrelated with the manifest variables x ji. Since each construct is formed by a
linear combination of the manifest variables, the sign of each weight π ji should be
the same sign as the correlation between x ji and ξ j [14, p. 165].

ξ j = ∑
i

π jix ji + δ j. (2)

Based on PLS path modeling with MODE B, a two-step score construction proce-
dure is implemented to estimate the polynomial model (Eq. (1)). Standardized esti-
mates Yj of the unobservable variables are computed as usual in the iterative stage of
the Wold’s procedure (step one). The Wold’s PLS-MODE-B algorithm starts choos-
ing an arbitrary weight vector—outer weights—to first relate each construct with
their own manifest variables. Usually this vector is a vector of ones. Each standard-
ized unobservable variable Yj—zero mean, unit variance—is computed as an ex-
act linear combination of its own centered manifest variables (external estimation).
An auxiliary unobservable variable Zj is introduced as a counterpart to the vari-
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able Yj. Each Zj—at iteration s—is computed as a weighting sum of standardized
unobservable variables computed in the iteration s and s+ 1. There are three dif-
ferent inner weighting schemes: the centroid, the factorial and the path weighting
schemes. The simplest scheme is the centroid scheme where the inner weights are
equal to the signs of the correlations between Yj and its adjacent Yi’s. Once the
auxiliary variables are estimated, the outer weights are recomputed. MODE B is con-
sidered for recomputing the outer weights when outer models are formative. The
vector wj of weights wji is the vector of the regression coefficients in the multiple
regression of Zj on the manifest variables related to the same unobservable variable
Zj. The first stage is iterated until convergence. Once scores are obtained, quadratic
(nonlinear) and cross-product (interaction) terms are directly computed from the
value of the standardized estimates of constructs (step two). The TsPLS procedure
ends when the endogenous variable is regressed on the linear, nonlinear and interac-
tion terms. Finally, to estimate structural relationships, we have followed the recom-
mendation already made for multiple regression. Recall that in multiple regression,
standardized coefficients of interaction effects are affected by changes in the means
of the variables or the correlations between predictor and moderator variables [7].
Therefore, independent and dependent variables, which are both linear and unob-
servable, are standardized; and nonlinear and interaction unobservable terms are not
standardized. If the regression coefficients are significant, this procedure ensures the
interpretability of the coefficients.

3 Monte Carlo Simulation Study

We have performed a simulation study to examine the performance of the TsPLS

procedure to estimate linear, nonlinear and interaction effects in SEMs with forma-
tive measurement models [3, 12]. The aims were:

• To examine the performance of the TsPLS procedure to estimate linear, nonlin-
ear and interaction effects in SEMs with formative measurement models.

• To examine the performance of the TsPLS procedure when few indicators are
considered per unobserved variable.

• To examine the performance of the TsPLS procedure when considering different
sample sizes.

• To inspect the conditions under which the TsPLS procedure detects a significant
nonlinear or interaction effect, by assuming that they actually exist (statistical
power).

• To inspect the conditions under which the TsPLS procedure detects an increase
in the predictability of a model.

The underlying true model considered a simple structure with three formative
exogenous constructs (ξ1, ξ2 and ξ3) related to one formative endogenous con-
struct (η). We have investigated the nonlinear effect of the second construct (ξ2), and
the moderating effect of the first construct (ξ1) on the third unobservable variable
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Fig. 1: Structural and measurement models of the simulated setups; these measure-
ment models consider two indicators per construct; a structural equation model with
linear (ξ1, ξ2 and ξ3), nonlinear (ξ 2

2 ), and interaction (ξ1ξ3) effects

(ξ3) (see Fig. 1). The experimental design considered models with two, four, six and
eight indicators per unobservable variable and three sample sizes (100, 250, 500),
a total of 12 different specifications. We have generated 500 random data sets for
each of the 3× 4 cells of the two-factor design in 5 steps as follows [10].

1. Manifest variables of exogenous constructs. Based on the PLS models, we have
generated standardized manifest variables x ji as random normal data for each
formative exogenous construct ξ j (x ji ∼ N(0,1)). There is no multicollinearity
between indicators, but they may covary.

2. Formative and linear exogenous terms. To compute the formative exogenous
constructs, we have assumed that all variables forming a construct are consid-
ered. Thus, variance of disturbance terms of the formative relationships, δ j, are
constrained to zero. The variance of ξ j is described by Eq. (3) where V (.) is the
variance operator.

V (ξ j) = π ′jX
′
jX jπ j . (3)

We have chosen a set of permissible weights π j for each block of variables,
so that the variance of formative constructs is one.2 Then, we have computed

2 If X is a set of p variables, the variance of a linear combination Y = Xb may be computed as
S2

Y = b′SXXb. Thus, if Y and X are standardized variables, to derive a set of permissible weights (or
b in this example) for relationships among variables is straightforward. These weights or true values
are those that the PLS-MODE-B algorithm attempts to recover. Recall that in PLS-MODE-B, the outer
weights are equal to the regression coefficients that are obtained once the scores of unobservable
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each formative construct ξ j as a weighted sum of the manifest variables. It is
relevant to note that increasing the number of manifest variables per construct
involves weighting a larger number of observable variables. In this case the
routines struggle to generate data sets for small sample sizes. There is no mul-
ticollinearity between exogenous constructs, but they may covary.

3. Nonlinear and interaction exogenous terms. Once the linear terms are gener-
ated, we have computed the nonlinear and interaction constructs as the power
(ξ 2

j ) and cross-product (ξ jξl) terms of the standardized linear constructs. Non-
linear and interaction terms are not standardized. This procedure ensures the
interpretability of simulation results. There are low correlations between the
linear and nonlinear terms.

4. Formative endogenous construct. We have calculated the endogenous unob-
servable variable η as a linear combination of the exogenous constructs (ξ1,
ξ2, ξ3, ξ 2

2 , and ξ1ξ3) plus a disturbance term ζ , so that the variance of η is 1
(Eq. (4)). The variance of the disturbance term can be computed from the vari-
ance of the endogenous construct. We have computed disturbance terms of the
inner relationships as random normal data with a zero mean and the correspond-
ing standard deviation. They are distributed independently of the unobservable
variables.

V (η) = β ′ξ ′ξ β +V (ζ ). (4)

where ξ is a five-dimensional vector containing all the linear and nonlinear
exogenous constructs and β a vector with the corresponding path coefficients
β j, α j and γ jl . It is worth noting that, for small sample sizes, it may happen that
the standard deviation of disturbance terms is undefined for a given set of true
values of path coefficients.

5. Manifest variables of endogenous construct. Once the formative endogenous
construct is computed, we have created the manifest variables for the formative
endogenous outer model. We have generated i− 1 standardized manifest vari-
ables as random normal data x ji ∼ N(0,1). The ith observable variable is cal-
culated as the difference between the endogenous construct and the weighted
manifest variables, that is as a linear combination of normal variables (Eq. (5)).

x ji =
1

π ji
(η−∑

i

π jix ji). (5)

To set the true parameters, we have taken into account different combinations of
permissible values in order to show whether they are recovered by the TsPLS pro-
cedure. Table 1 shows the true values of weights, linear, nonlinear and interaction
effects. As can be seen, we have considered different permissible values of weights
in weight vectors. However, we also studied the case where weights in weight
vectors are all equal. For instance, we set a true weight of 0.6 for models with two

variables are computed. PLS path modeling belongs to the family of fixed-point methods, “fixed-
points are found iteratively by means of a sequence of regressions starting with an arbitrary choice
for ŵ” (see [2], p. 78).
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indicators per construct as well as values of 0.4, 0.35, and 0.3 for models with four,
six and eight indicators per construct, respectively. Even though, these values may
not be considered permissible weights, obtained results were quite similar to those
shown in Sect. 4. We have implemented the TsPLS procedure in R-project [13]. The
R-package dgmb implements the data generation procedure and offers a Graphical
User Interface (GUI) to fix the simulation parameters and generate data [10].

To achieve the objectives of this research, we have examined the accu-
racy and precision with which the TsPLS procedure retrieves the true values.
Accuracy is reported in terms of the mean bias ( 1

t ∑t
i=1 E[θi]− θ , where t is the

number of runs) and mean relative bias (MRB= 100 ∗ 1
t ∑t

i=1
θ−E[θi]

θ , [1]) of the
estimates. Precision is reported in terms of the mean square error of the estimates
(MSE= Bias2 +Variance). Furthermore, we have examined the relative frequency
with which the TsPLS procedure detects a significant nonlinear or interaction effect,
assuming that this actually exists. Statistical power is determined considering an
α = 0.05 and the corresponding sample size and effect. Finally, we have inspected
the conditions under which the procedure detects an increase in the predictability
of a model. The increase in the predictability is reported in terms of the p-values
of F-statistics in two cases. First, we have analyzed whether there is a significant
increase in predictive power of a linear model with the addition of a nonlinear term.
A second case considers the addition of an interaction term to the nonlinear model.

Table 1: True values for weights, and linear, nonlinear and interaction effects; a
model with three formative exogenous constructs and one formative endogenous
construct; cases for two, four, six and eight manifest variables (MVs) in each outer
model

Coefficient 2 MVs 4 MVs 6 MVs 8 MVs

Weights of exogenous (0.8,0.4) (0.2,0.3,0.5,0.7) (0.5,0.3,0.4,
0.3,0.5,0.1)

(0.3,0.3,0.4,0.3,
0.4,0.3,0.2,0.3)

constructs (π j) (0.4,0.8) (0.2,0.4,0.6,0.5) (0.2,0.4,0.6,
0.4,0.2,0.3)

(0.3,0.3,0.4,0.3,
0.2,0.3,0.4,0.2)

(0.1,0.9) (0.3,0.5,0.7,0.2) (0.3,0.6,0.2,
0.3,0.4,0.2)

(0.4,0.5,0.4,0.3,
0.2,0.1,0.3,0.2)

Linear effects (β j) (0.5,0.4,0.3) (0.5,0.4,0.3) (0.5,0.4,0.3) (0.5,0.4,0.3)
Nonlinear effects (α j) 0.3 0.3 0.3 0.3
Interaction effects (γ jl) 0.3 0.3 0.3 0.3
Weights of endogenous (0.4,0.8) (0.2,0.3,0.5,0.5) (0.5,0.3,0.4,

0.3,0.5,0.1)
(0.3,0.3,0.4,0.3,

0.4,0.3,0.2,0.3)
construct (π j)
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4 Results

Figure 2 shows the mean relative biases of linear, nonlinear and interaction effects
for models with two, four, six and eight indicators and different sample sizes. True
linear effects of 0.5 and 0.4 are illustrated in Fig. 2a, b, respectively. True nonlin-
ear and interaction effects are 0.3 (Fig. 2c, d, respectively). The TsPLS procedure
underestimates the true values of all inner relationships. All estimates significantly
improve by increasing the number of observations. The biases of linear effects are
much smaller than the biases of nonlinear and interaction effects. For models with
two indicators per construct, the largest MRBs of linear effects range from 13.24%
(N = 100) to 9.90% (N = 500) whereas in models with eight indicators the largest
MRBs range from 17.87% (N = 100) to 12.10% (N = 500). The largest MRBs of
interaction effects range from 32.38% (N = 100) to 19.34% (N = 500) in mod-
els with two indicators per construct whereas in models with eight indicators per
construct the largest MRBs range from 68.41% (N = 100) to 30.47% (N = 500).
In the case of nonlinear effects, the largest MRBs range from 29.33% (N = 100) to
20.48% (N = 500) in models with two indicators per construct whereas in models
with eight indicators per construct, the largest MRBs range from 67.35% (N = 100)
to 28.33% (N = 500). The estimates of nonlinear and interaction effects may not be
accurate when models are estimated with small sample sizes (≤ N = 100), but the
true values are underestimated.

Figure 3 shows the mean square errors of linear, nonlinear and interaction eff-
ects by increasing the sample size and the number of indicators per construct.
By increasing the sample size, the MSE clearly approaches zero. Interestingly,
the TsPLS procedure performed better for the nonlinear effects than for interaction
effects.

Figure 4a, b show the relative frequency (statistical power) with which the TsPLS

procedure detects a significant nonlinear effect and a significant interaction effect,
respectively. The estimated model included three linear effects, a nonlinear effect
and an interactive effect on the endogenous construct. As seen in the figures, the
statistical power increases by increasing the sample size. When outer models have
two, four, six and eight indicators per construct, the statistical power is ≥0.8 when
the sample size is ≥250. In addition, the TsPLS procedure also detects significant
nonlinear and interaction effects with a relative frequency ≥0.8 when outer mod-
els have two indicators per construct and N = 100. The procedure most frequently
detected a significant nonlinear effect rather than an interaction effect.

Figure 5a shows the p-values of the F-statistics to test the effect of the nonlinear
term in the model. Here, the compared models are (1) a nonlinear model with three
linear effects and a nonlinear effect on the endogenous construct, and (2) a linear
model with three linear effects on the endogenous construct. A statistically signifi-
cant F indicates that the nonlinear effect exists. Thus, the TsPLS procedure detects
significant nonlinear effects (p-value <0.01) with samples sizes ≥100 in models
with two, four and six indicators per construct. When models consider eight indica-
tors per construct, significant nonlinear effects are also captured with a sample size
of 100 and a p-value <0.05.
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Fig. 2: Mean relative biases of linear, nonlinear and interaction effects. SEMs with
two, four, six and eight indicators per construct and different sample sizes. (a) Linear
effect β1. (b) Linear effect β2. (c) Nonlinear effect. (d) Interaction effect

Figure 5b shows the p-values of the F-statistics to account for an increase in
the explained variance in the dependent variable with the addition of an interac-
tive effect to the nonlinear model. Results are similar to the previous case and
the procedure detects a significant interactive effect (p-value <0.01) with samples
sizes ≥250. For N = 100, the procedure detects a significant interactive effects with
p-value <0.05 in models with two and four indicators per construct.
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5 Final Remarks

Results are quite conclusive. The TsPLS procedure preserves the convergence prop-
erties of Wold’s algorithm for PLS path modeling with MODE B. Hence, the TsPLS

estimates are consistent; that is, by increasing the sample size, bias and error
approach zero. Through this extensive Monte Carlo simulation study, we have
shown that, under the conditions considered here, the TsPLS procedure underesti-
mates the linear, nonlinear and interaction effects between exogenous and endoge-
nous formative constructs.

When the sample size is N = 100, the procedure struggles to recover the true
value of the nonlinear and interaction effects, especially when the formative outer
models have six and eight indicators per construct. When the measurement models
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include two or four indicators per construct, accuracy and precision significantly
improve. Thus, the TsPLS procedure is suited to estimate SEMs with formative
blocks of variables and few indicators per construct. However, it is important to note
that if a construct is well-formed by few indicators, this is a property of the model,
not the method. The set of manifest variables of a formative construct should be a
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census of the variables that form the construct, not a sample. Therefore, a tendency
to define formative constructs with few indicators should be avoided if there is no
strong theory supporting this decision. For medium and large sample sizes (N = 250
and N = 500), biases are about 15% for linear effects and 30% for nonlinear and in-
teraction effects. Thus, the TsPLS procedure is more suited to estimating nonlinear
and interaction effects when medium and large sample sizes are available. These
results are confirmed when assessing the predictive power of the model and the rel-
ative frequency with which the TsPLS procedure detects a significant or interaction
effect (statistical power). However, a significant increase of the predictability of the
model is observed whether sample sizes are ≥100. The TsPLS procedure detects
significant nonlinear or interaction effects with a relative frequency ≥0.80 when
sample sizes are ≥250.

A main drawback of the TsPLS procedure is that nonlinear and interaction unob-
servable terms are not taken into account when computing the linear effects. This is
because, the latter are calculated within the Wold’s algorithm (limited-information
approach). Therefore, to consider other approaches is a task for future research.
Finally, the data generation procedure described here allow us to study other simu-
lation set ups in future research.
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A Comparison of PLS and ML Bootstrapping
Techniques in SEM: A Monte Carlo Study

Pratyush N. Sharma and Kevin H. Kim

Abstract Structural Equation Modeling (SEM) techniques have been extensively
used in business and social science research to model complex relationships. The
two most widely used estimation methods in SEM are the Maximum Likelihood
(ML) and Partial Least Square (PLS). Both the estimation methods rely on Boot-
strap re-sampling to a large extent. While PLS relies completely on Bootstrapping
to obtain standard errors for hypothesis testing, ML relies on Bootstrapping under
conditions in violation of the distributional assumptions. Even though Bootstrap-
ping has several advantages, it may fail under certain conditions. In this Monte Carlo
study, we compare the accuracy and efficiency of ML and PLS based Bootstrapping
in SEM, while recovering the true estimates under various conditions of sample size
and distributional assumptions. Our results suggest that researchers might benefit
by using PLS based bootstrapping with smaller sample sizes. However, at larger
sample sizes the use of ML based bootstrapping is recommended.

Key words: Bootstrapping, Partial least squares, Maximum likelihood, Structural
equation modeling

1 Introduction

Structural Equation Modeling techniques, such as the covariance based SEM
(CBSEM) and the Partial Least Squares based SEM (PLS), have gained enormous
popularity as the key multivariate analysis methods in empirical research in the
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past few years. These techniques have been applied in diverse disciplines such as
management information systems (MIS) [19], marketing [18] and psychology [10].
While there are many similarities in the two techniques, there are major differences
among them especially in the estimation approaches they utilize. CBSEM focuses
on estimating a set of model parameters so that the theoretical covariance matrix
implied by the system of structural equations is as close as possible to the sample
covariance matrix [18]. One of the most common estimation methods in CBSEM
is the Maximum Likelihood (ML), which assumes multivariate normality and large
sample theory. However, since researchers often work with relatively small samples
from non-normal populations, bootstrap re-sampling offers a viable alternative [16].
Unlike CBSEM, PLS does not work with latent variables rather it works with block
variables, and estimates model parameters to maximize the variance explained for
all endogenous constructs through a series of ordinary least squares regression
[18]. Thus, Partial Least Squares (PLS) based Structural Equation Models do not
assume normality, and hence employ bootstrapping to obtain standard errors for
hypothesis testing. Instead they assume that the sample distribution is a reasonable
representation of the intended population distribution [7, 8].

Bootstrapping is a nonparametric approach to statistical inference that does not
make any distributional assumptions of the parameters like traditional methods.
Bootstrapping draws conclusions about the characteristics of a population strictly
from the sample at hand, rather than making unrealistic assumptions about the pop-
ulation. That is, given the absence of information about the population, the sample is
assumed to be the best estimate of the population. Hence, bootstrapping has advan-
tages in situations where there is weak or no statistical theory about the distribution
of a parameter, or when the underlying distributional assumptions needed for valid
parametric inference are violated [14].

Bootstrapping estimates the empirical sampling distribution of a parameter by
re-sampling from a sample with replacement. Although each re-sample has the same
number of elements as the original sample, the replacement method ensures that
each of these re-samples is likely to be slightly and randomly different than the
original sample [15]. If the sample is a good approximation of the population then
bootstrapping will provide a good approximation of the sampling distribution of the
parameter. This necessitates a sufficiently large and unbiased sample. Unsurpris-
ingly, researchers have cautioned against blind faith in bootstrapping and advocated
investigation of bootstrapping, especially under conditions of insufficient sample
size [9, 21].

In Structural Equation Models, Bootstrapping allows for the possibility to con-
duct significance testing of a statistic (θ ) such as a path or a factor loading. Such
significance tests analyze the probability of observing a statistic of that size or larger
when the null hypothesis H0 : θ = 0, is true. However, Bollen and Stine (1992) have
argued that while such a naı̈ve bootstrap procedure works well in many cases, it can
fail if the sample that is used to generate bootstrap samples doesn’t represent the
population. Under the naı̈ve bootstrapping, the mean of the bootstrap population (i.e.
the average of the observed sample) is unlikely to be equal to zero. In such cases,
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the bootstrap samples are drawn from a population for which the null hypothesis
does not hold, regardless of whether H0 holds for the unknown population from the
original sample was drawn. Hence the bootstrap values of the test statistic are likely
to reject H0 too often [2]. This is most likely for misspecified models, or when the
true population model is unknown. As a remedy, Bollen and Stine proposed a sim-
ple transformation of the data that seeks to make the null hypothesis true under the
bootstrap re-sampling by centering the data around the sample mean. Re-sampling
from the centered values forces the mean of the bootstrap population to be zero so
that H0 holds, resulting in fewer Type-1 errors [2].

Given the reliance of CBSEM and PLS on bootstrapping under most conditions,
we argue that researchers need a better understanding of bootstrapping behavior
especially under the limiting conditions of sample size, distributional assumptions
and model misspecifications. We also seek to contribute to the ongoing debate in
the MIS and marketing literatures about the use of PLS under conditions of insu-
fficient sample sizes and distributional assumption violations [7, 11, 12, 18, 19].
While there are a few studies comparing CBSEM and PLS under various sets of
design factors [1, 6, 18], none of them have focused on bootstrapping behaviors of
the estimation methods used. Our goal is to provide researchers with some addi-
tional guidelines based on bootstrapping behavior while choosing among CBSEM
and PLS. We conducted a Monte Carlo study to evaluate the efficiency and accuracy
in model parameter recovery by naı̈ve bootstrapping in PLS, and ML and Bollen-
Stine bootstrapping in CBSEM. Specifically, our research question is: In terms of
the efficiency and accuracy of model parameter recovery, how does naı̈ve bootstrap-
ping in PLS compare to ML and Bollen-Stine bootstrapping in SEM across various
conditions of sample size and distributional assumptions? We analyzed this question
using a mixed ANOVA design.

2 Method

We conducted a Monte Carlo study to analyze the behavior of bootstrapping tech-
niques under the most commonly used estimation methods in SEM. The latent
variable model used in this study involved two exogenous variables and one end-
ogenous variable each with three reflective indicators with no cross-loadings, no
model misspecifications and no interaction effects. The factor loadings (lambdas)
for the measurement model were set to 0.6 and the path loadings (betas) for the
structural model were set at 0.3 (Fig. 1).

Data were generated using Fleishman and Vale-Maurelli’s method [4, 20] for
this underlying model under five conditions of sample size (50, 100, 150, 200 and
500) and four distributions (normal, χ2 with d f = 3, t-distributed with d f = 5,
and uniform). One hundred dataset replications were performed for each of the 20
conditions, with 250 bootstrap replications for each dataset. Standardized parame-
ter estimates from PLS, ML, and ML Bollen-Stine bootstraps were compared. All
simulations were run on the R computing environment [17] using the sem [5] and
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Fig. 1: A 3-factor theoretical model
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sempls packages [13]. PLS parameters were estimated using path weighting scheme
for inner weight computation and Mode A (reflective) outer weight computation.
To assess the accuracy in the parameter recovery, we performed a 3× 5× 4 mixed
design ANOVA on average bias and root mean square deviation (RMSD). To assess
efficiency, we conducted mixed ANOVA to analyze the averages of the standard
deviations of the sampling distribution of parameter estimates (i.e., standard errors).

3 Results

In order to analyze if there were any differences among the techniques in terms of
achieving proper solutions, we checked the instances for non-convergence of sol-
utions (i.e., the model didn’t coverage within 500 iterations) and the valence of
the variance estimates. Table 1 presents the frequency pattern of non-convergence
of ML based CBSEM, PLS, and the three bootstrap techniques. We found that for
ML based CBSEM all non-convergences occurred at sample size 50, however PLS
always converged. Bootstrap techniques produced higher non-convergences and
the non-convergence rates decreased as sample size increased. Bollen-Stine Boot-
strap had the lowest number of non-convergence issues and almost all such non-
convergences occurred at sample size 50. Surprisingly, PLS Bootstrap also suffered
from non-convergences at larger sample sizes of 200. ML based bootstrap fared
the worst among the three techniques, however, all non-convergences occurred at
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smaller sample sizes 50 and 100. Overall, non-convergence rates up to sample size
100 were below 5%, while the non-convergence rates at sample size 150 or above
were very low (less than 1%).

Table 1: The number of non-convergence frequencies of CBSEM, PLS, and boot-
strap

Bootstrap
Sample size Distribution ML-SEM PLS ML Bollen-Stine PLS
50 Normal 7 12 11 6

χ2 5 15 12 10
t-distributed 5 16 7 2

Uniform 5 12 6 12
100 Normal 4 3

χ2 2 3
t-distributed 1 3

Uniform 1
150 Normal 1

χ2 1
t-distributed

Uniform 1
200 Normal 1

χ2 2
t-distributed 1

Uniform 2
500 Normal

χ2

t-distributed
Uniform

Total 63 37 47

Table 2: Mean bias and RMSD of measurement and structural model by sample size
and estimation method. Since ML and Bollen-Stine SEM bootstrap values were
similar, we only present ML bootstrap values

Sample size Method Measurement model Structural model
Bias SE RMSD SE Bias SE RMSD SE

50 ML 0.008 0.002 0.163 0.002 0.048 0.012 0.210 0.007
PLS 0.115 0.003 0.214 0.003 −0.032 0.003 0.121 0.004

100 ML 0.000 0.001 0.103 0.002 0.009 0.010 0.147 0.006
PLS 0.134 0.002 0.184 0.002 −0.060 0.003 0.097 0.003

150 ML 0.000 0.001 0.083 0.002 −0.008 0.009 0.111 0.006
PLS 0.143 0.002 0.174 0.002 −0.076 0.003 0.100 0.003

200 ML 0.000 0.001 0.071 0.002 0.005 0.009 0.097 0.006
PLS 0.148 0.002 0.167 0.002 −0.080 0.003 0.097 0.003

500 ML −0.001 0.001 0.044 0.002 0.000 0.009 0.064 0.006
PLS 0.153 0.002 0.160 0.002 −0.087 0.003 0.094 0.003
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Next, we analyzed the accuracy and efficiency of the bootstrap techniques. Since
in this study there were no model misspecifications, we expected that ML and
Bollen-Stine bootstrapping in SEM would result in similar accuracy and efficiency
of the parameter recovery. The ANOVA results showed that the bias, RMSD and
the averages of the standard deviations of the parameter estimates for both ML
and Bollen-Stine bootstraps in CBSEM were similar, confirming our expectations.
However, these estimates differed significantly when compared to naı̈ve bootstrap-
ping in PLS (Table 2). In terms of measurement model accuracy, we found that
the mean bias and RMSD values for the retrieved factor loading estimates in naı̈ve
PLS bootstrapping were larger than both ML and Bollen-Stine SEM bootstraps.
Surprisingly, we found that as sample size increased PLS bias increased, suggest-
ing that naı̈ve PLS bootstrapping overestimated the factor loadings at larger sample
sizes. However, we also found that in general naı̈ve PLS bootstrap had larger bias
but smaller RMSD than both the ML and Bollen-Stine bootstraps for the structural
model estimates (i.e., regression coefficients among latent variables). The RMSD
values for structural model suggested that the naı̈ve PLS bootstrap outperformed
ML and Bollen-Stine SEM bootstraps up to a sample size of 200, after which the
situation was reversed. The effect of distributional conditions on bootstrap accuracy
and efficiency was not significant.

In terms of the measurement model efficiency, we found that the mean of stan-
dard errors of ML and Bollen-Stine SEM bootstraps were smaller than the naı̈ve
PLS bootstrap up to a sample size of 200 (Table 3). However, at a sample size of
500, naı̈ve PLS bootstrap had similar efficiency as ML and Bollen-Stine bootstraps.
For the structural model efficiency, we found that the naı̈ve PLS bootstrap outper-
formed ML and Bollen-Stine SEM bootstraps at all levels of sample size.

Table 3: Mean standard errors of measurement and structural models by sample size
and estimation methods

Sample size Method Measurement model Structural model
M SE M SE

50 ML 0.181 0.002 0.276 0.006
PLS 0.215 0.005 0.146 0.003

100 ML 0.107 0.002 0.183 0.006
PLS 0.127 0.005 0.090 0.003

150 ML 0.085 0.002 0.146 0.006
PLS 0.099 0.005 0.076 0.003

200 ML 0.074 0.002 0.123 0.006
PLS 0.076 0.005 0.067 0.003

500 ML 0.045 0.002 0.079 0.006
PLS 0.045 0.005 0.044 0.003
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4 Discussion

In this investigation of bootstrap methods we wished to ascertain if there were
differences between naı̈ve PLS bootstrap and ML or Bollen-Stine SEM bootstraps
under conditions free from model misspecifications. We found that, in general, the
naı̈ve PLS bootstrap was more accurate and efficient than ML and Bollen-Stine
SEM bootstraps for estimating structural model parameters. However the reverse
was true for measurement model estimates. As per our expectations, we found that
the ML and Bollen-Stine bootstraps in SEM had similar accuracy and efficiency
in recovering the parameter estimates. We leave it for future research to perform
additional analysis by incorporating model misspecifications, different number of
indicators, and compare the three bootstrap methods mentioned above. It would be
interesting to investigate the effect of the complex interplay of model misspecifica-
tions, sample size, and the estimation methods (PLS vs. ML) on bootstrap accuracy
and efficiency. Specifically, the research question that can be addressed in the next
phase is: In terms of the efficiency and accuracy of model parameter recovery, how
does naı̈ve bootstrapping in PLS compare to ML and Bollen-Stine bootstrapping in
SEM across various conditions of measurement and structural model misspecifica-
tions, and sample size?

Like all research, our study was limited in several ways. First, all our variables
were generated on a continuous scale, while in practice researchers most often work
with categorical and nominal data. Second, all our constructs were reflective in
nature rather than formative. Reflective constructs aim to identify measures that are
inter-correlated, have unidimensionality and have strong internal consistency. For-
mative constructs on the other hand aim to explain unobservable variance, reduce
multicollinearity and consider the indicators as predictors of the construct [3]. While
this distinction is important to capture the congruence between the theoretical defi-
nition of the construct and its measurement, it was out of scope of our study.

5 Conclusion

PLS outperformed ML in smaller sample sizes; not only did it always converge but
it also led to smaller bias and RMSD than ML. However, as sample size increased,
the difference between the techniques disappeared. At larger sample sizes, ML pro-
duced smaller bias and RMSD than PLS. PLS was more accurate at reproducing
structural parameters than ML but it was less efficient at the measurement param-
eters. Hence, at large sample sizes, ML is preferred over PLS but at small sample
sizes, a researcher might benefit from using PLS over ML.
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Abstract OnPLS was recently proposed as a general extension of O2PLS for
applications in multiblock and path model analysis. OnPLS is very similar to
O2PLS in the case with two matrices, but generalizes symmetrically to cases with
more than two matrices without giving preference to any matrix.

OnPLS extracts a minimal number of globally joint components that exhibit
maximal covariance and correlation. A number of locally joint components are
also extracted. These are shared between some matrices, but not between all. These
components are also maximally covarying with maximal correlation. The variation
that remains after the joint and locally joint variation has been extracted is unique
to a particular matrix. This unique variation is orthogonal to all other matrices and
captures phenomena specific in its matrix.

The method’s utility has been demonstrated by its application to synthetic
datasets with very good results in terms of its ability to decompose the matrices. It
has been shown that OnPLS affords a reduced number of globally joint components
and increased intercorrelations of scores, and that it greatly facilitates interpretation
of the models. Preliminary results in the application on real data has also given
positive results. The results are similar to previous results using other multiblock
and path model methods, but afford an increased interpretability because of the
locally joint and unique components.
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1 Introduction

OnPLS was recently proposed as a general extension of O2PLS [13, 15] for
applications in multiblock and path model analysis [5, 7]. OnPLS is very similar
to O2PLS in the case with two matrices, but generalizes symmetrically to cases
with more than two matrices without giving preference to any matrix.

OnPLS extracts a minimal number of globally joint components that exhibit max-
imal covariance and correlation. A number of locally joint components are also ex-
tracted. These are shared between some matrices, but not between all. These com-
ponents are also maximally covarying with maximal correlation. The variation that
remains after the joint and locally joint variation has been extracted is unique to
a particular matrix. This unique variation is orthogonal to all other matrices and
captures phenomena specific in its matrix.

The method’s utility has been demonstrated by its application to synthetic
datasets with very good results in terms of the ability to decompose the matrices. It
has been shown that OnPLS affords a reduced number of globally joint components
and increased intercorrelations of scores, and that it greatly facilitates interpretation
of the models. Preliminary results in the application on real data has also given
positive results. The results are similar to previous results using other multiblock
and path model methods, but afford an increased interpretability because of the
locally joint and unique components.

2 Method and Theory

Latent variable methods often produce scores vectors vt as linear combinations of
the columns of a matrix X using loading weight vectors vw such that vt =Xvw. The
rows of the matrix represent observations (patients, samples etc.) and the columns
are the measured variables on these samples. The score vectors are usually maxi-
mizing some criterion, e.g., maximal correlation or covariation between scores from
different matrices or maximal variance of a score vector within a matrix, under some
constraints on the weights or the scores. For example, in PLS regression there are
two matrices, X and Y, and the objective is to maximize the covariance between
their score vectors as

(M− 1)Cov(vt,vu) = vtTvu = vwTXTYvc, (1)

assuming the matrices X and Y have been mean centred, and where M is the number
of rows in the matrices.

In the context of latent variable methods in general, but of PLS regression in
particular, assume now that we can decompose X as

X = X1 +X2 (2)
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such that YTX1 = YTX is maximal according to PLS regression and YTX2 = 0.
Then when we calculate the score vectors vt we get

vt = Xvw = (X1 +X2)vw = X1vw+X2vw (3)

in which X2vw need not be zero while at the same time YTX2vw = v0. The scores
thus contain variation that won’t change the relation to Y but will surely affect the
interpretation of the score vector vt. PLS is still able to model these matrices and
create a very good regression model, but the model will require more components
and thus be more difficult to interpret [14, 16].

Methods that find and extract variation with this property were originally called
orthogonal signal correction methods (or filters) [17], but have moved beyond be-
ing just pre-processing filters to being an integral part of the model building and
interpretation [13–15].

The objective in OnPLS was originally to generalize this to several matrices in
order to separate variation that is joint in all matrices from variation that is not joint
in all matrices (i.e., from the variation that was unique in a particular matrix or
related to at most all but one of the other matrices). But OnPLS has recently been
extended beyond this to decompose a set of matrices (Xi, M×Ni, i = 1, . . . ,n) in
several parts such that each part represents the variation that is joint (in terms of
covariation) between the different subsets of matrix combinations [6]. This idea is
illustrated in Fig. 1.

This decomposition is thus made for the variation that is joint with all other
matrices, the variation that is locally joint between some but not all matrices, i.e.,
for subsets of matrices, and the variation that is unique in a matrix, i.e., that is not
shared with any other matrices. When simplifying the locally joint part, the model
of each matrix looks like

Xi = TG,iPT
G,i︸ ︷︷ ︸

XG,i
globally joint

+ TL,iPT
L,i︸ ︷︷ ︸

XL,i
locally joint

+TU,iPT
U,i︸ ︷︷ ︸

XU,i
unique

+Ei, (4)

X1

X2 X3

Fig. 1: The method described in this paper aims to divide each matrix in several
parts. One globally joint part, i.e. the part that each matrix shares with all other
matrices (the black area in the centre); several locally joint parts that contain the
variation that each matrix shares with some of the other matrices (the areas with
lines, dots and squares); and one part with variation unique in a particular matrix
(the open areas)
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for i = 1, . . . ,n (i.e., for n matrices). Note, that there are 2n−1− 2 possible locally
joint models in each matrix, which is why, for simplicity, we lump them all together
in XL,i.

This decomposition is sought for each matrix such that the covariation between
the matrices XG,i is maximal, such that the covariation between the relevant locally
joint matrices XL,i is maximal, such that the variation in XU,i is maximal while
covarying minimally with the other matrices, and also such that the different parts
are mutually orthogonal.

Globally joint variation, captured in a score vector vtG,i, is understood as the vari-
ation in Xi that is joint with all other matrices, i.e., XT

G, jvtG,i �= v0, for all j �= i. Lo-
cally joint variation, on the other hand, captured in a score vector vtL,i is understood
as variation in Xi that is joint with some, but not all other matrices, i.e., such that
XT

G, jvtL,i = v0, for all j, but such that possibly XT
L, jvtL,i �= v0 for any but not all j.

Unique variation is variation captured in a score vector vtU,i such that XT
j vtU,i = v0

for all j �= i.
The set analogy in Fig. 1 clearly illustrates that each matrix can be split in 2n−1

parts. I.e. in the n = 3 case we would split X1 into four parts as

X1 =
(
X1∩X2∩X3

)

︸ ︷︷ ︸
globally joint

+
(
(X1∩X2)\X3

)
+
(
(X1∩X3)\X2

)

︸ ︷︷ ︸
locally joint

+
(
X1∩ (X2∪X3)

)

︸ ︷︷ ︸
unique

,

where ∪ is the set union operator, ∩ is the set intersection operator, \ is the set
difference operator and S is the set complement. For matrix X1, X1 ∩X2 ∩X3

would thus be the globally joint part (shared with all matrices), (X1∩X2)\X3 and
(X1∩X3) \X2 would be the locally joint parts (shared with some but not all) and
X1∩ (X2∪X3) would be the unique part (shared with no other matrices).

The joint models are either multiblock models where all matrices are assumed
to be related to all other matrices and the objective is to investigate the nature of
these relationships, or the joint models are path models in which a more or less
complicated set of paths are assumed to exist between matrices.

The multiblock OnPLS approach was first presented in [7] such that it splits each
matrix in two parts, one that relates all matrices to each other (the joint part) and
one that contains all variation that is not globally joint, i.e., that contains the locally
joint and the unique parts.

The OnPLS path model approach was presented in [5] as a generalization of the
multiblock model in [7]. The generalization was such that some of the connections
between matrices could be removed and thus would not contribute to the model of
all other matrices; the multiblock model is a special case of this, with all matrices
connected. This approach thus allows for more general relationships to be analyzed
since path modeling connects a number of data sets and allows for analysis of the
path along which information is considered to flow from one matrix to another.
These paths can for instance represent a known time sequence, an assumed causality
order, or some other chosen organizational scheme [2, 12].

In order to describe these relationships, an n× n adjacency matrix C was intro-
duced in [5] that has elements ci, j = 1 if the matrices Xi and X j are connected and 0
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otherwise. The matrix C thus describes a graph, such as the one in Fig. 2a. If all
elements (except for the diagonal) of C are 1, then the problem seeks a multiblock
solution as described in [7], and illustrated in Fig. 2b.

2.1 Joint Variation

The objective in OnPLS is thus to split each matrix in parts belonging to the dif-
ferent intersections of the Venn diagram in Fig. 1. The approach that we suggest is
described below and begins with trying to find the black colored center intersection
of Fig. 1.

The key to finding the globally joint variation is in the singular value decompo-
sition of the cross-product matrix of each pair of connected matrices

Ci, jΣi, j
ˆ̂WT

i, j = ci, jXT
j Xi, (5)

for j �= i and ci, j = 1. The columns of ˆ̂Wi, j corresponding to non-zero (or “suf-
ficiently large,” when considering noise levels and so on) singular values of Σi, j

represents the variation in Xi that is joint with X j. Note that if ci, j = 0, then the

matrices Xi and X j are not connected. In that case we have ˆ̂Wi, j = 0 and the weight
matrix will not contribute to the solution.

All globally and locally joint variation is captured in this decomposition, but the

unique variation is excluded. This weight matrix, ˆ̂Wi, j, is thus a representation of
all variation in Xi that is joint with X j. If we want to maximize

XT
j vti = XT

j Xivwi (6)

a b

Fig. 2: OnPLS can build two conceptually different types of models. (a) Those in
which the matrix C contains zeros outside of the diagonal, which conceptualizes
path models. (b) And those in which the matrix C only have ones outside of the
diagonal
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for a score vector vti of Xi, then we are looking for the right singular vector
corresponding to the largest singular value of XT

j Xi. Analogously, if we want to
minimize Eq. 6 to find score vectors of Xi orthogonal to X j then we want the right
singular vector corresponding to the smallest singular value of XT

j Xi (those we ex-
clude here).

The assumption now is that the globally joint variation for Xi is represented in all

weight matrices, ˆ̂Wi, j, and that it can be extracted from them. The method we have
used, and which works very well in practice, is to take the singular value decompo-
sition of an augmented matrix with all these bases such that

ŴiΣiVT
i =

[
ˆ̂Wi,1| . . . | ˆ̂Wi,i−1| ˆ̂Wi,i+1| . . . | ˆ̂Wi,n

]
, (7)

in which Ŵi is a recollection of the common structures in all covariation bases. Di-
rections common in all ˆ̂Wi, j must end up in the first singular vectors of Ŵi because
of the nature of the singular value decomposition. This is basically the same as us-
ing SUM-PCA [9] to find the common structures in the weight matrices. Many other
methods could be used here, e.g., generalised PCA, canonical correlation etc., but
in our experience this approach works fast and yields very good results.

Thus, in the n = 3 case for X1, the augmented matrix in Eq. 7 would contain all
variation covered by the filled (globally joint), the striped (locally joint between X1

and X2) and the dotted (locally joint between X1 and X3) fields in Fig. 1 and the
objective is to extract from this the black field (the globally joint field in the centre
of Fig. 1). This is what is attempted to be found in Ŵ1.

Thus, Ŵi is a representation of all variation in Xi that is shared with all other
matrices. Any vector vwLU,i in the row space of Xi orthogonal to the columns of
Ŵi will yield a score vector vtLU,i = XivwLU,i orthogonal to the globally joint space
since

XT
j vtLU,i = XT

j XivwLU,i = Ci, jΣi, j
ˆ̂WT

i, jvwLU,i, (8)

where j �= i for j such that ci, j = 1, since vwLU,i is orthogonal to the globally joint

weights, Ŵi, which are assumed to be present in ˆ̂Wi, j. By orthogonalizing Xi to Ŵi

we get
Ei = Xi

(
I− ŴiŴT

i

)
= Xi−XiŴiŴT

i , (9)

in which any vector in the row space is a potential vwLU,i vector.
It was described in [15] that only the variation overlapping with the joint scores

(e.g., the PLS score matrix) need to be extracted, not everything orthogonal to the
joint space. In this context this means that by projecting Xi onto Ŵi we obtain
a potential joint score space, Ti = XiŴi, but this space is tainted by variation not
globally joint. The overlapping “non-globally” joint variation can therefore be found
by maximizing

∥
∥TT

i vtLU,i
∥
∥2

=
∥
∥TT

i EivwLU,i
∥
∥2

= vwT
LU,iE

T
i TiTT

i EivwLU,i. (10)
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This overlap is thus given by the eigenvector corresponding to the largest eigenvalue,
λi, of

ET
i TiTT

i EivwLU,i = λivwLU,i. (11)

When the “non-globally joint” weight vector vwLU,i and the corresponding score
vector vtLU,i have been found, the corresponding “non-globally joint” loading vector
is calculated as vpLU,i = XT

i vtLU,i/(vtT
LU,ivtLU,i) and the matrix is deflated by

Xi←Xi− vtLU,ivpT
LU,i =

(

I− vtLU,ivtT
LU,i

vtT
LU,ivtLU,i

)

Xi. (12)

This updated matrix is used to find the next “non-globally joint” component starting
over from Eq. 9 and onwards.

A number of such score vectors are extracted from its corresponding matrix. The
matrix that is left does not have any more “non-globally joint variation”, and can
therefore be used successfully in a standard multiblock or path model to find the
globally joint model. Note also that the globally joint variation and the non-globally
joint variation will be orthogonal by construction, since the deflation procedure or-
thogonalizes against vtLU,i in Eq. 12.

An optimisation criterion analogous to the criterion used in PLS regression is
used here for building the multiblock and path models. The objective is to maxi-
mize the covariation of all connected matrices. This is achieved by maximizing the
function

fC(w1, . . . ,wn) =
n

∑
i=1

n

∑
j=1, j �=i

ci, jvwT
i XT

i X jvwj =
n

∑
i=1

n

∑
j=1, j �=i

ci, jvtT
i vt j, (13)

using the matrix C as explained above and subjecting the weight vectors to the
constraint that ‖vwi‖= 1, for i = 1, . . . ,n. It is straight-forward to use the method of
Lagrange multipliers to solve this problem. Doing that we end up with the system

λivwi =
n

∑
j=1, j �=i

ci, jXT
i X jvwj (14)

for all i = 1, . . . ,n. These equations are thus the conditions required to maximize the
objective function, fC, in Eq. 13.

Two monotonic convergent procedures were recently proposed [5] for the com-
putation of the weights vwi, for i = 1, . . . ,n, in the maximization of Eq. 13. The first
procedure is based on Jacobi iteration and was initially proposed by Horst [4] and
its monotonic convergence was proven by ten Berge [10]. This procedure has been
further extended to more general classes of problems by Hanafi and Kiers [3]. The
second procedure is based on Gauss-Siedel iteration and was reported and its mono-
tonic convergence proven by ten Berge [10]. The principle of this procedure has
been used by Hanafi [2] and Tenenhaus and Tenenhaus [11] in a PLS path modelling
context.
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The two procedures are iteratively building a monotonically convergent sequence

of weights, vw(s)
i , s = 1,2, . . ., using two different iteration schemes. New and sim-

plified proofs of the monotonic convergence of these procedures were given in [5]
for the maximisation of fC.

The criterion in Eq. 13 is equivalent to MAXDIFF [3] in the special case when all
ci, j = 1, for i �= j, and in the path model case it ends up being equivalent to PLS path
modeling using Horst’s inner weighting scheme (where the inner weighting scheme
is the identity) and what has been called “New Mode A” [11].

Note that any method could be used in this step instead of the proposed ap-
proach, as long as it is sufficiently similar to the one used in the filtering. Their
score and loading vectors should be found using sufficiently similar approaches in
order to compare and contrast the globally joint, locally joint and unique models.
This should, however, not be a big problem in general.

To mimic the model of X in PLS regression and in order to allow for more
complex models to be built, OnPLS allows more than one joint component to be
extracted from the matrices. The proposed method of deflation is just as in PLS
regression. Once the weights vwi have been found, we calculate the scores

vti = Xivwi (15)

and the loadings

vpi =
XT

i vti
vtT

i vti
(16)

and deflate each matrix by

Xi← Xi− vtivpT
i = Xi

(
I− vwivpT

i

)
=

(
I− vtivtT

i

vtT
i vti

)
Xi. (17)

Note that when all “non-globally joint” variation has been extracted we have vpi ≈
vwi and in that case this deflation approach is very similar to the deflation approach
in MAXDIFF. But to make the contrast with MAXDIFF clear the proposed approach
was named nPLS in [7].

2.2 Locally Joint Variation

The variation extracted above is globally joint. This means that the variation that
is left is either unique to a particular matrix or shared with some, but not all other
matrices.

The locally joint variation can be found by performing OnPLS recursively on
models using a subset of the n matrices with at least two connected matrices. Re-
moving one component at the time from the strongest submodel until there are no
more submodels will extract locally joint variation with maximal variance.
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There are 2n−1−2 possible locally joint models that can be built for each matrix.
One approach would be to build all of these for one component after first extracting
the variation that is not “global” from the perspective of this submodel, select the one
that yields the highest value for Eq. 13. Deflate this component from the matrices it
belongs to and start over again until there are no more significant components. While
this is a possible approach that would extract the maximal locally joint variation, it
is hardly feasible with large n because of the exponential growth in the number of
submodels when n increases.

Another approach would be to assume that all n matrices are included, build a
model of them and then remove those whose components are insignificant or “weak”
according to some criteria. At least one must be insignificant since it would other-
wise be part of the globally joint model. Then the model is rebuilt while including
only those matrices that had significant components. This would be a greedy ap-
proach for finding the locally joint model with maximum value of Eq. 13 one com-
ponent at the time. While this approach should extract the same number of locally
joint components, it should also terminate more quickly since it would automatically
disregard submodels where there is no locally joint variation.

2.3 Unique Variation

If the components of the locally joint variation are extracted just as the components
for the globally joint variation (as in Eq. 17), then the variation that is left is by
construction orthogonal to all variation already extracted. But this also means that
it is orthogonal to all other matrices since it was not caught by the globally joint
model and not by one of the locally joint models either. I.e. this variation must
be unique in the particular matrix. A PCA model of the variation that is left will
therefore separate the unique systematic variation from noise, while also extracting
the components in order or decreasing variance.

3 Results

Several different synthetic data sets have been used in order to evaluate OnPLS.
They were all created in the following way: A set of loading vectors were created
using either a Gaussian loading profile or a unit pulse loading profile (rectangular
loading profile), and the loadings were correlating to different degrees. All score
vectors were mutually orthogonal random vectors. The score vectors were given ar-
bitrary lengths (i.e., different norms). Each matrix was then created as a sum of prod-
ucts of the matrices’ loading profiles and the scores. The matrices were created as:
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Xi =
AG

∑
j=1

vt jvpT
i, j

︸ ︷︷ ︸
XG,i

+
AG+AL,i

∑
j=AG+1

vt jvpT
i, j

︸ ︷︷ ︸
XL,i

+
AU,i

∑
j=1

vti, jvpT
i,AG+AL,i+ j

︸ ︷︷ ︸
XU,i

+Ri, (18)

where Ri is normally distributed random noise (about 1 % was added to each ma-
trix). The matrices thus share globally joint score vectors, and a different number of
locally joint score vectors, but have their own unique loadings.

Example 1 in [7] illustrates how “non-globally joint” variation distorts both the
joint components and the unique components, and how extracting this variation
greatly improves interpretability of both the globally joint model and the model
of the unique variation. The loading vectors are clearly distorted if this type of fil-
tering is not applied, as seen in Fig. 3b, but when the “non-globally joint” variation
is removed the extracted model is the true underlying joint model as seen in Fig. 3c.

By performing the decomposition as described above the correlation of the joint
score vectors increases and converges to the true maximum. This is seen in Fig. 4
(the results of Example 3 in [7]). In this example there were six matrices sharing
two joint components and having a different number of locally joint components
(zero through eight). The variation that is captured by the joint score vectors in the
OnPLS model is fine-tuned towards the globally joint part and contains almost no
locally joint variation (see [7]).

A simulation study shows that the variation found for the different parts is close
to the true variation put in the matrices. Several hundred models were built and for
each of them the modified RV coefficient [8] (a correlation coefficient for matrices)
was calculated between the true and the extracted components for each part. The
results showed that the modified RV coefficients were between 0.8–0.9 on average
for the globally joint model, the locally joint model and the unique model.
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Fig. 3: The true joint and unique components that make up the data sets in this
example are displayed in (a). A two-component nPLS model was created for each
matrix without extracting any locally joint or unique components; the result is dis-
played in (b). An OnPLS model was also created for each matrix; the extracted
joint and unique OnPLS loadings are displayed in (c) (Reprinted from [7] with kind
permission from John Wiley & Sons)
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An analysis of infra red data used in the monitoring of protein structure changes
during cheese ripening was performed in [5]. The results are similar to previous
multiblock and path model analyses of these data with the added benefit of being
able to interpret the “non-globally joint” components.
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Fig. 4: When an increasing number of non-globally joint components is extracted
the sum of correlations of the joint score vectors of the OnPLS model increases. The
sum of all joint first score vectors is shown in (a) and the sum of all joint second
score vectors is shown in (b) (Reprinted from [7] with kind permission from John
Wiley & Sons)

In [1] the authors built two O2PLS models in series to analyze three data sets.
The score matrices T and U of the first O2PLS model were put in a single matrix
and then used with the third matrix in a second O2PLS model. This approach was
used to find the globally joint variation in the analysis of metabolite, protein and
transcript data of hybrid aspen. These data were also analyzed using OnPLS [6],
which gave very similar results for the globally joint variation with the added benefit
of transparent analysis of locally joint and unique variation.
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Testing the Differential Impact of Structural
Paths in PLS Analysis: A Bootstrapping
Approach
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Abstract Researchers are often interested in examining the relative impact of PLS
structural paths. As such, this paper focuses on how one assesses the impact of vari-
ous antecedent constructs to a particular endogenous construct. In a survey of recent
papers in the field of Information Systems employing structural equation modeling,
discussion of differences or conversely equivalency of paths were typically made
without any statistical tests. In a few cases, a traditional t-test was used. This paper
begins with a didactic presentation of how such t-tests are estimated followed with
introducing an alternative bootstrapping approach. Results from both empirical and
simulated data show different conclusions are made between these two approaches.
In particular, we show that under data conditions of high kurtosis, bootstrapping is
less likely to commit a Type I error of stating substantial differences among paths
when none exist.
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1 Introduction

To date, researchers employing PLS path modeling regularly use the non-parametric
resampling procedure of bootstrapping at the standard procedure for assessing the
significance of structural paths [2]. When examining the invariance of structural
paths across different samples, the permutation procedure [2] or bootstrap t-tests
[1, 3] is used. But, to the best of the our knowledge, there has not been any explicit
discussion of how one assesses whether there are difference in impact among a set of
exogenous constructs to an endogenous construct in a PLS model. Specifically, the
question posed is how does one test the relative impact among a set of path estimates
to a particular construct? Conversely, how does one demonstrate the impact equality
or invariance of a set of predictor constructs to a dependent construct? In a literature
review of top journals in Information Systems, we show that discussion based on the
point estimates is the primary approach for claiming relative impact or importance
of exogenous constructs. Yet, no formal statistical tests are provided. In this paper,
we introduce a bootstrapping approach that is easily employed with existing PLS
software packages. We also discuss the parametric approach that is part of regression
based analysis. In general, we advocate the use of the PLS bootstrapping procedure
since it will likely perform better relative to Type I and Type II errors under varying
conditions of non-normality.

2 MIS Literature

We conducted a review of articles that performed structural path modeling in three
top rated journals that the MIS discipline often submit to (i.e., MIS Quarterly, Infor-
mation Systems Research, and Management Science) for the period of 2000–2011.
The results included 39 articles that involve path analysis using primarily either
LISREL or PLS. We then examined what the authors stated or inferred in their
discussion and/or conclusion sections. Table 1 presents a sampling of our findings.
In nearly all cases, the authors focused on the point estimates with discussion con-
cerning which structural path was larger or had more impact relative to others. In
the few cases in which a statistical test was applied to support such statements, the
method was a parametric based t-test. Therefore, we continue with a discussion
of the procedure for conducting such t-tests and follow up with our suggested
bootstrap approach.

3 Approach 1: Parametric Based t-Test

Testing the difference of two independent variables in the same sample with nor-
mality assumptions requires estimating the standard error of the differences between
betas (i.e., βi−β j). The standard error is estimated as follows:

SEβi−β j
=

√
1−R2

y
n−k−1 (r

ii + r j j + 2ri j)
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Table 1: Sample of articles discussing structural path differences

Information Systems Research, 2002, Vol. 13, No. 3, Kim, Lee, Han & Lee, “Businesses
as Buildings: Metrics for the Architectural Quality of Internet Businesses,” using LIS-
REL, p. 250
The path coefficient from firmness to customer satisfaction was larger than that from delight
to customer satisfaction in the stock brokerage domain, whereas delight had a stronger link
to satisfaction than firmness in the other three domains
MIS Quarterly, 2001, Vol. 25, Bhattacherjee, “Understanding Information Systems
Continuance: An Expectation Confirmation Model,” using PLS, p. 364
Perceived usefulness was a stronger predictor of acceptance intention in TAM than attitude

(Davis et al. 1989; Taylor and Todd 1995), while satisfaction was the stronger predictor of
continuance intention in this study than perceived usefulness
MIS Quarterly, 2008, Vol. 32, Au, Ngai & Cheng, “Extending the Understanding of
End User Information Systems Satisfaction Formation: An Equitable Needs Fulfillment
Model Approach,” using PLS, p. 53
The results of the study indicate that perceived IS performance is the most significant de-
termining factor of EUS, with a standardized coefficient of 0.45 (H1). This is consistent with
previous research findings (Suh et al. 1994; Swan and Trawick 1980) and implies that product
performance as perceived by end users is still the core determinant of satisfaction. Neverthe-
less, equitable work performance fulfillment and equitable relatedness fulfillment do play a
significant role in directly affecting satisfaction (H3 and H4), with standardized coefficients
of 0.19 and 0.17, respectively. Hence there is evidence to suggest that both constructs have a
more or less equal impact in affecting users’ levels of satisfaction
MIS Quarterly, 2010, Vol. 34, Johnston & Warkentin, “Fear Appeals and Information
Security Behaviors: An Empirical Study,” using PLS, p. 560
Interestingly, while both response efficacy and self-efficacy appear to have strong predictive
ability, social influence has slightly more of an effect on behavioral intent
Information Systems Research, 2006, Vol. 17, Pavlou & Dimoka, “The Nature and Role
of Feedback Text Comments in Online Marketplaces: Implications for Trust Building,
Price Premiums, and Seller Differentiation,” using PLS, p. 405
These findings validate H1 and H2 and confirm the economic value of benevolence and
credibility. Interestingly, benevolence (b = 0.41) had a stronger impact on price premiums
compared to credibility (b = 0.30), (t = 11.30, p < 0.001)
Information Systems Research, 2001, Vol. 12, Plouffe, Hulland & Vandenbosch,
“Research Report: Richness Versus Parsimony in Modeling Technology Adoption
Decisions-Understanding Merchant Adoption of a Smart Card-Based Payment Sys-
tem,” using PLS, p. 214
The model does a good job of explaining variance in both perceived usefulness (R2 = 0.282)
and intention to adopt (R2 = 0.327). This explanatory power is based more on the effect of
perceived usefulness (as demonstrated by the values in the final column of Table 4) than on
perceived ease-of-use, a result that is consistent with earlier work
Information Systems Research, 2007, Vol. 18, Jiang & Benbasat, “Investigating the In-
fluence of the Functional Mechanisms of Online Product Presentations,” using PLS,
p. 463
In terms of their relative power, the comparison of path coefficients shows that vividness ex-
erts a stronger influence than interactivity on perceived diagnosticity (path coefficients: 0.40
versus 0.21), compatibility (path coefficients: 0.37 versus 0.14), and shopping enjoyment
(path coefficients: 0.49 versus 0.26)
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with rii = 1
1−R2

i
where R2

i is the squared multiple correlation of the k− 1 remain-

ing independent variables with independent variable Xi (often called the variance

inflation factor or VIF) and ri j =
−βi j

1−R2
i
=
−β ji

1−R2
j

where βi jis the standardized partial

regression coefficient of Xi on Xj with the other independent variables having been

partialed. Alternatively ri j =
−pri j√

(1−R2
i )(1−R2

j )
where pri j is the correlation between Xi

and Xj with all other independent variables having been partialed out from each.
The denominator is equivalent to the square root of the product of the Tolerances
reported in statistical packages such as SPSS.

Hence, we can perform a t-test of significance of the differences in betas as
follows:

t =
βi−β j

SEβi−β j

.

4 Approach 2: Nonparametric Bootstrapping of Path Differences

A nonparametric alternative which can easily be accomplished with existing PLS
software is to run N bootstrap samples of the model in question. The difference
score between the paths being considered are then calculated for each bootstrap
sample. Once this is calculated, a percentile bootstrap p-value can be estimated. As
an example, if 1,000 bootstrap analyses were conducted, the number of path dif-
ference estimates that yielded a zero or negative difference would be an estimate
of the p-value. This represents a distribution free approach for estimating path dif-
ference of independent variable effects on the same dependent variable for a single
sample. Alternatively, one can go further and estimate both an acceleration and bias
correction [4].

5 MIS Example: Nonparametric Bootstrapping of Path
Differences Versus Parametric t-Test

As an example research, we present a model that focuses on technology accep-
tance using Self-Determination Theory (SDT) [5, 6]. The proposed model includes
three extrinsic motivations (external, introjected, and identified regulation) and
three antecedents to the extrinsic motivations (interface quality, decision support
quality, and perceived network externality). In this model, behavioral intention to
use an e-marketplace application is the dependent variable. This study reveals how
different types of extrinsic motivation affect the behavioral intention, which may
allow researchers to take a closer look at the user’s cognitive process in determin-
ing behavioral intention. Secondly, by including the antecedents to the extrinsic
motivators in terms of information artifacts, this study provides a tool for investi-
gating the determinants for the motivators in the context of a networked application
adoption (Fig. 1).
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Fig. 1: PLS results of structural model assessment

The data collection was conducted using three lists of e-marketplace application
users. A total of 888 subjects out of the 1,238 on the census list from a major U.S. e-
marketplace company were identified as a possible sample pool; 350 subjects were
used earlier for the pilot test. A total of 207 survey questionnaires were returned
due to a wrong address, employees leaving the company, and a company’s policy of
not answering survey questionnaires. A total of 97 responses were received within
a month after the questionnaire was distributed by mail. Two other lists were pro-
vided by a chemical company and a semiconductor manufacturer in Korea that run
e-marketplace applications. From the lists, 300 active users (200 from the chem-
ical company list, 100 from the semiconductor manufacturer list) were selected.
The distribution of the survey questionnaire was conducted via email by an em-
ployee of each company. A total of 49 (chemical company) and 46 (semiconductor
manufacturer) responses were collected . To summarize, a total of 981 final survey
questionnaires were distributed. Of this number, a total of 192 surveys were re-
turned (response rate 19.6%). Out of 192 returned survey questionnaires, 176 were
usable which therefore led to a 17.9% usable response rate. In general, the three
extrinsic motivations (i.e., external, introjected, and identified) are hypothesized to
directly influence behavioral intention to use an e-marketplace application. Part of
the study also considers the relative importance of the three extrinsic motivations,
which can be assumed based on SDT [5]. SDT posits that the more self-determined
or internalized a behavior is, the more persistent a nd effective the behavior is. It
is conjectured that the influence of identified regulation on behavioral intention to
use an application is the most significant, followed by introjected regulation, and
external regulation.

H1: Among the three extrinsic variables affecting behavioral intention to use an e-
marketplace application, identified regulation has the strongest effect on behavioral
intention, followed by introjected regulation, and external regulation.

For the parametric approach, we export the PLS construct scores into SPSS for a
regression analysis. The unstandardized solution within rounding error matches the
PLS estimates (see Table 2).
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Partial Correlation Estimates are next obtained from SPSS as shown in Tables 3
and 4 using IDR and INR as the dependent variables respectively.

Table 2: Regression results using SPSS

Table 3: Partial correlation estimates obtained from SPSS with IDR as dependent
variable

Table 4: Partial correlation estimates obtained from SPSS with INR as dependent
variable

Using PLS path estimates, but standard error (SE) from the SPSS output, we
are able to calculate the t-value and p-value for the differences between the path
estimates (see Table 5).

Table 5: Hypothesis 1 test results—parametric t-tests

Compared constructDifference in PLS path estimatesSE of the differences T value Significance
IDR vs. EXR 0.392−0.234 = 0.158 0.0713 t =2.21 p < 0.013
IDR vs. INR 0.392−0.320 = 0.072 0.0562 t =1.28 p < 0.101
INR vs. EXR 0.320−0.234 = 0.086 0.0632 t =1.36 p < 0.087

In contrast, Table 6 provides the results of running a bootstrap percentile analysis
with 1,000 bootstrap samples.
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Table 6: Hypothesis 1 test results—Bootstrap p values

Compared construct Difference in PLS path estimates Bootstrap percentile p value
IDR vs. EXR 0.392−0.234 = 0.158 0.080
IDR vs. INR 0.392−0.320 = 0.072 0.311
INR vs. EXR 0.320−0.234 = 0.086 0.220

In general, if one were to use a p < 0.10 criterion, both methods converge on
the same conclusion with identified regulation (IDR) having a stronger impact than
external regulation (EXR). But the results for the other two differences diverged.
For the parametric test (Table 5) introjected regulation to external regulation (INR
vs. EXR, p = 0.087) was significant at p ≤ 0.10, while identified regulation to in-
trojected regulation (IDR vs. INR, p = 0.101) might also be considered significant
at the 0.10 level. In the case of bootstrapping (Table 6) the difference hypothesis
(H1) regarding identified regulation to introjected regulation (IDR vs. INR) and, in-
trojected regulation to external regulation (INR vs. EXR) is clearly not supported.
The difference between the parametric and bootstrapping results may be due to de-
partures in normality of the items resulting in each construct score having approx-
imately a left skewness of −3 and leptokurtosis of 21. Our recommendation under
these conditions is to defer to the bootstrapping results.

Fig. 2: PLS estimates from simulated data where population structural paths are
both set at 0.50

To further support this point, we next provide a simple simulation study (see
Fig. 2) where the two constructs A and B are modeled as impacting construct Z. The
population paths going into Z from both A and B are specified as equivalent at 0.50.
In addition, constructs A and B are correlated at 0.25 to represent the likelihood
that they share common antecedent factors. All constructs are modeled with 6 item
indicators where 3 indicators are set with standardized loadings of 0.60 and 3 at
0.80. The population skewness and kurtosis given to each construct was set at a less
extreme level than that of our empirical sample data (see Table 7).
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Table 7: Summary skewness and kurtosis statistics for simulated constructs

Constructs Skewness Kurtosis Z-score skewness P-value Z-score kurtosis P-value
Antecedent factor 2.33 16.206 59.113 0.000 330.884 0.000

Construct A 1.464 5.388 44.941 0.000 108.984 0.000
Construct B 1.422 5.443 44.110 0.000 111.133 0.000
Construct Z 0.976 2.382 33.786 0.000 48.642 0.000

Table 8: Partial correlation estimates obtained from SPSS with simulated data

Applying the parametric approach using the SPSS output from Table 8, we would
conclude there is a significant difference in the two structural paths with a value of
t = 9.115. In contrast, when we apply bootstrapping with 1,000 resamples, we end
up with the opposite conclusion (i.e., that the two paths are not significantly different
due to a p-value of 0.278).

6 Discussion and Summary

The results of the empirical study and brief simulations are not necessarily that
surprising to statisticians. Essentially, if the assumption of normal distribution for
the constructs or items measured are violated, the parametric t-test for differences
among paths may indeed be biased and possibly lead to incorrect conclusions. The
bootstrapping approach introduced here was shown to be less affected in the case
of leptokurtic distribution. In the case of platykurtic distribution, the opposite will
likely occur where the actual power to detect differences in paths will likely be lower
using a parametric t-test as opposed to bootstrapping. We’ve shown earlier that re-
searchers in the Information Systems field rarely ever conduct statistical tests when
they discuss the relative impact of exogenous factors. The rare instance in which
actual statistical tests are conducted, we found only parametric t-test employed. We
suspect this is not necessarily unique to this discipline and therefore hope applied
researchers would consider using the alternative approach presented here.
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Controlling for Common Method Variance
in PLS Analysis: The Measured Latent
Marker Variable Approach

Wynne W. Chin, Jason B. Thatcher, Ryan T. Wright, and Doug Steel

Abstract Common method variance (CMV) continues to be an important issue for
social scientists. To date, methodologists have yet to agree upon a best practice for
detecting and controlling for CMV. In a recent paper, the unmeasured latent marker
variable approach, a frequently employed technique, was shown to be incapable of
detecting or controlling CMV in PLS analyses. Unfortunately, this was the only
method to date suggested for handling CMV in PLS models. To fill this gap, we
introduce a measured latent marker variable (MLMV) approach and demonstrate
how it is able to both detect and correct for CMV when using Partial Least Squares.
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1 MLMV Approach to the Common Method

Our new MLMV approach has the potential to tease out CMVs influence on
structural paths. To do so, the process requires collecting multiple unrelated mea-
sures at the same time as collecting data related to the primary research model. This
contrasts with the unmeasured latent marker variable approach [1–6], which uses
indicators of manifest variables from the primary research model to estimate CMVs
influence. Thus, a critical aspect of the MLMV approach is to select a set of mea-
sures that reflect underlying constructs that have no nomological relationship with
the particular study in question while using the same survey format and scale to re-
flect the common method effects. These measures in turn are modeled as capturing
an underlying CMV and labeled as an MLMV. As many MLMVs are created (using
the same set of measures) as there are dependent constructs in the research model
where each MLMV is deployed to control for common method variance effects on
each dependent construct in the research model.

To evaluate our MLMV approaches potential, we present the results of simula-
tions that vary the form, and level, of CMV. Specifically, we demonstrate that our
method accurately detects, and controls for, CMV present in structural equation
models estimated with Partial Least Squares. Our research contributes to the litera-
ture on CMV by providing initial evidence of a MLMV approach that detects and
controls for different levels, and forms of, method variance.

2 Guidelines to MLMV

In order to use our MLMV approach, researchers must carefully select MLMV
indicators to include in their initial data collection. Ideally, researchers should con-
sider the following guidelines when collecting data:

1. Each indicator must not be in the same domain as constructs found in the
research model.

2. Each indicator must be drawn from different unit of analysis than that investi-
gated in the research model.

3. Rather than focusing on the reliability of each indicator towards measuring their
respective construct, it is more critical to ensure all unique and error variances
are independent among the set of measures chosen.

4. The MLMV must include a minimum of four items. As we illustrate in our
simulations, a latent marker approach is robust to using varying numbers of
indicators. Although ideally, one would use 12 items to estimate an MLMV, we
demonstrate that one can detect and reduce CMV by more than 70% using as
few as 4 items.

5. Because the MLMV is not the primary purpose of the study, a well-designed
survey should include these indicators at the end of the instrument. This would
minimize the effects of respondent fatigue on the pattern of responses relevant
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to the main study. Even though the measures appear at the end of the survey,
their utility for evaluating CMV should not be affected.

3 Two Approaches for Applying the MLMV Items

Once a reasonable set of MLMV items are collected, two methods for minimizing
CMV effect may be considered. The first, construct level correction (CLC), involves
creating as many CMV control constructs as there are constructs in the model.
For example, if the theoretical model consists of three constructs, you would cre-
ate three CMV control constructs. Each CMV control uses the same entire set of
MLMV items (mode B). CMV construct is modeled as impacting each model con-
struct. The residuals obtained now represent the model constructs with the CMV
effects removed. The second approach, item level correction (ILC), involves using
the MLMV items to partial out the CMV effects at the measurement item level.
Each item measure is regressed on the entire set of MLMV items. The residuals
for each item now represent the construct items with the CMV effects removed.
But the CMV should be replaced with an equivalent amount of random error to be
equivalent to the variance of the original measures sans bias. This is necessary to
obtain assessment of the reliability of the original items in capturing the underlying
construct of interest. To do this, the R-square obtained from each item to MLMV
regression is used. Specifically, the square root of the R-square multiplied with a
number drawn from a normal distribution of mean 0 and standard deviation of 1 is
added to each item residual. This represents the final ILC items used in a PLS anal-
yses. While this second approach is more tedious, it allows for estimates of item
loadings. But both approaches is meant to provide more accurate estimates of the
structural paths relative to using items with CMV.

To demonstrate this, we present the results of a simulation using the same settings
as Chin et al. [3] with the common method bias was set at 0.36 for each item mea-
sure and all trait loadings at 0.70. Consistent with Chin et al. results, we obtained
a biased estimate of 0.741 for the structural path between two model constructs
when the population parameter is 0.60 (see Fig. 1). Twelve measures that reflect the
underlying method bias (i.e., MLMV) were also simulated. Concretely, this would
represent questions that are unrelated to the theoretical domain being researched as
well as to each other. We opted to further increase the sample size to 10,000 cases in
comparison to the Chin et al. study use of 5,000 cases to guarantee further statistical
stability and eliminate concerns of estimates inaccuracies due to sample size.

Now, if we include the 12 MLMV indicators as control by creating a CLC con-
struct for the two model constructs, we see that prior inflated path of 0.741 now more
closely matches the population parameter with an estimate of 0.606 (See Fig. 2).
This represents the impact of construct XX on construct YY holding CLC constant.
The next step is to use each CLC scores to partial out the CMV from both constructs
to obtain the partial correlation between XX and YY. Table 1 shows the results where
the number of MLMV items varied from 1 to 12. While a 12-item CLC effectively
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captured the simulated CMV, our simulation illustrates that one can use a 4 item
LMV to remove 72% variance due to CMV. Given that researchers tend to have lim-
ited space on survey instruments to include additional items, these results illustrate
that our MLMV approach is flexible enough to be included in surveys of varying
lengths.

Fig. 1: PLS estimates using items CMV of 0.36

Figure 3 represents the results of using the ILC correction. In contrast to the CLC
approach, the item loadings are more consistent with a PLS analyses without CMV
effects. As in the Chin et al. paper [3], the population loadings are all set at 0.70.
The estimated loadings varying from 0.76 to 0.789 are consistent with the tendency
of PLS to overestimate the loadings by approximately 10%. Likewise, the estimated
structural path of 0.552 is consistent with an approximate 10% underestimation of
the population parameter of 0.60.

Figure 4 represents the results without the inclusion of noise to replace the
equivalent amount of CMV removed from each item. Accordingly, the loadings are
inflated to the 0.90. In turn, the path estimate of 0.602 is similar to that obtained
via the CLC approach. While not presented here, it is assumed that if we replaced
additional noise to match the amount of CMV removed at the construct level via the
CLC approach, the resulting path estimate would be similar to Fig. 3.

Overall, both approaches seem to converge to the same results. In the case of
using CLC, we obtain an accurate estimate of the path estimate at the expense of the
loadings. Nonetheless, the more accurate loadings can be obtained by correlating
each construct residual after partialling out the CMV with the original item mea-
sures. For the ILC, we obtain more accurate item loading estimates at the expense
of the structural path. But, the path estimates can be obtained if we do not compen-
sate for the CMV partialed out for each item.
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Fig. 2: First step in CLC approach for CMV

Table 1: Number of latent marker measures and percentage reduction in CMV using
CLC

# of MLMV
items in CLC

12 11 10 9 8 7 6 5 4 3 2 1

Structural
estimate

0.600 0.604 0.608 0.613 0.616 0.619 0.624 0.630 0.639 0.652 0.670 0.696

Percent
reduction
(%)

100 97 94 91 89 87 83 79 72 63 50 32

Fig. 3: Results of ILC approach for CMV with additional error added to compensate
for amount of CMV removed
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Fig. 4: Results of ILC approach for CMV

Fig. 5: PLS results of items with varying levels of trait and method

As a final test, we follow the same setting as Chin et al. [3] scenario 7. This is
where the first two items for each construct had true score and method loadings of
0.8 and 0.2, respectively. This was followed by 0.7 and 0.4 for the next two items.
The final two were set at 0.6 and 0.6 (i.e., equal amounts of true and method effects).
Figure 5 shows the results of a PLS using the items without any correction for the
method effect. The method effect obscures the trait only reliability and we see the
last two items for each construct with higher loadings when in fact the true loadings
based on our simulation specification should be 0.6. As expected, the added method
effect resulted in a larger path estimate of 0.656 when the true population param-
eter is 0.60. Figure 6 shows the results of using the CLC approach. The resulting
path estimate was a more realistic number 0.568. Likewise, Fig. 7 shows the ILC
approach without error compensation yielded a similar 0.566 path estimate. With
error compensation, Fig. 8 shows the ILC method provides more accurate estimates
of the trait loading. In contrast to Fig. 5, we now see that the first two items are more
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Fig. 6: Result of CLC approach for items with different trait method impact

Fig. 7: Result of ILC approach with (varying trait and method): no error compensa-
tion

reliable, followed by the next two, and finishing with the last two for each construct.
On average, each estimated loading is about 10% higher than the true loading con-
sistent with the PLS algorithm. Figure 9 provides the PLS results using simulated
data where the underlying model has no method effects. Instead, only the item load-
ings vary with 0.8, 0.7, and 0.6 set for each set of two items per construct as in
the trait-method model used for Figs. 5 through 8. The 10% inflation of loadings
inherent using the PLS algorithm is apparent and the path estimate is conversely
underestimated.



238 W.W. Chin et al.

Fig. 8: Result of ILC approach with additional error replacement for CMV removed
(varying trait method)

Fig. 9: PS estimate for congeneric trait only model (no CMV added)

4 Conclusion

Overall, this paper provides two new approaches for partialling out CMV in the
context of PLS analyses. The CLC approach primarily corrects for structural path
estimates while the ILC can correct for both structural path and item loading esti-
mates depending on whether you replace the CMV removed with equivalent amount
of random error. Nevertheless, the utility of MLMV indicators should be considered
on a study by study basis. Because the appropriate MLMV should be tailored to the
specific research question and sample frame, we do not suggest a universal set of
items. Rather, we trust that researchers have the capacity to make reasonable judg-
ments based on their understanding of their specific domain of inquiry following the
guidelines we have set forth.
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Multi-group PLS Regression: Application
to Epidemiology

Aida Eslami, El Mostafa Qannari, Achim Kohler, and Stéphanie Bougeard

Abstract For the investigation of the relationships between two datasets where
the individuals are divided into groups a simple procedure called multi-group PLS

regression is discussed. It is a straightforward extension of PLS regression to take
account of the group structure. It can also be seen as an extension of multi-group
principal components analysis to the case of two blocks of data. The proposed
method of analysis is illustrated on the basis of a real case study pertaining to the
field of veterinary epidemiology.

Key words: Partial least squares, Multi-group partial least squares, NIPALS algo-
rithm, Multi-group principal components analysis, Epidemiology

1 Introduction

In various domains of application, data are often organized in two blocks of vari-
ables consisting of an explanatory dataset X and a dependent dataset Y . Moreover,
since the measuring techniques have tremendously evolved with the times, prac-
titioners are more than ever presented with large datasets with highly collinear
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variables. For the aim of relating dataset Y and dataset X , PLS regression [17] is
nowadays very popular since it has proved to be very efficient both in terms of
exploring the relationships between the two datasets and accurately predicting Y
from X .

We consider the setting where, in addition to having two datasets X and Y , we
know that there is a group structure among the individuals. There are numerous sit-
uations which correspond to this setting. In the field of veterinary epidemiology, the
aim is often to identify risk factors (dataset X) that lead to various expressions of
disease (dataset Y ), all the measurements being made on animals which are grouped
into farms. In environmental studies, one can be interested in explaining the abun-
dance of species by other environmental measurements and, for this purpose, data
are collected on statistical units (e.g., sites) that are organized into groups (e.g.,
regions).

Depending on the application field, different methods are used to analyze this
kind of data. In epidemiology, the statistical procedures usually performed pertain
to Generalized Linear Models (GLM). The group structure among individuals is
taken into account by including repeated or random effects in Generalized Esti-
mating Equations (GEE) [3]. These models have appealing features that justify their
wide use but all the potential explanatory variables can not be included in the model
because they are plagued by quasi-collinearity. It is well-known that in these circum-
stances, the relevance and the stability of the results obtained from GEE are impaired
[2]. The multivariate analysis of covariance (MANCOVA) [5] can be viewed as an
extension of GLM to the multivariate framework. However, this method, in addition
to being very sensitive to the presence of quasi-collinearity among the predictive
variables, is based on restrictive assumptions which are rarely fulfilled in practice. In
the general framework of PLS Path Modeling, methods of analysis that take account
of the presence of a group structure among individuals were proposed [1, 15]. By
contrast, our strategy of analysis fits within the framework of PLS regression and is
simple and straightforward.

In order to investigate the links between X and Y a first strategy of analysis is to
ignore the group structure and perform PLS regression of Y upon X . However, by
ignoring the group structure, it follows that the total variance recovered by the latent
variables mixes up both the between and the within-group variances. A second strat-
egy of analysis consists in applying as many PLS regressions as there are groups in
the data (i.e., PLS regression applied on data from each group). Clearly, this strategy
of analysis yields a large number of parameters which is likely to lead to an instabil-
ity problem of the solution because of a lack of degrees of freedom to estimate all the
parameters. Moreover, this strategy entails a difficulty in interpreting the outcomes
and comparing the results across the groups. In order to counteract these problems,
we propose to carry out a compromise PLS regression. We shall refer to it as multi-
group PLS regression (MGPLS). This consists in performing PLS regression on the
data from the various groups, but we impose that the vector of loadings associated
to both X and Y variables are the same across the groups. As a matter of fact, MGPLS

can be seen as an extension of multi-group Principal Component Analysis (MGPCA)
[8]. This latter method of analysis was defined as a way to perform PCA on the data
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from the various groups but the vectors of loadings are assumed to be identical from
one group to another. MGPLS is introduced on the basis of a maximization problem
whose solution leads to an eigen-analysis problem. We also propose a NIPALS algo-
rithm to solve this problem. Indeed, there is a great benefit in designing a NIPALS

algorithm since it is much faster than the solution based on an eigen-analysis par-
ticularly when dealing with high dimensional data [16]. Moreover, it can be easily
adapted to take account of missing data [14]. The method of analysis is illustrated
on the basis of a real case study pertaining to veterinary epidemiology.

2 Method

2.1 Data and Notations

The datasets X and Y respectively consist in the measurement of P and Q quanti-
tative variables on the same N individuals. Moreover, these datasets are partitioned
into M groups known a priori. Let Ym and Xm be the datasets associated with group
m for m = (1, . . . ,M). Each group refers to nm individuals (∑M

m=1 nm = N). The rank
of the dataset X and the maximum dimension of analysis is denoted by H. As stated
in the introduction, we aim at investigating the relationships between datasets Ym

and Xm (m = 1, . . . ,M). For this purpose, we seek, step by step, latent variables (or
components) in Xm and Ym which are highly related. Moreover, we impose that, for
each step, the loadings associated with these latent variables are identical across the
groups. Let a(h) be the common vector of loadings associated with the dataset X and
b(h) the one associated with the dataset Y for dimension h = (1, . . . ,H). We define

group components by t(h)m = Xma(h) and u(h)m = Ymb(h) related to group m for the hth
order solution. The global components are defined by t(h) = Xa(h) and u(h) =Y b(h).
They are directly derived from the vertical concatenation of the group components.
The graphical display in Fig. 1 depicts all these elements.

2.2 First Order Solution

In a first step, we seek group components t(1)m = Xma(1) and u(1)m =Ymb(1) associated
with the same vectors of loadings, namely a(1) for the X variables and b(1) for the Y
variables. We consider the following maximization criterion:

Max.
M

∑
m=1

nmcov(u(1)m , t(1)m ), with ‖ a(1) ‖=‖ b(1) ‖= 1 (1)
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Fig. 1: Structure of two-block multi-group datasets, highlighting the relationships
between the variable blocks and their associated common loadings and group com-
ponents for the first dimension (h = 1)

Criterion (1) highlights the optimal link between the group components t(1)m and u(1)m

for each group m = (1, . . . ,M). It reflects that the group components in Xm and in
Ym have, on average, as large a covariance as possible.

The criterion to be maximized can be written as a(1)T [∑M
m=1 XT

mYm]b(1). It follows
that, for a fixed vector a(1), the maximum is achieved by setting:

b(1) =
∑M

m=1 Y T
m Xma(1)

‖ ∑M
m=1 Y T

m Xma(1) ‖ (2)

Replacing the common loadings b(1) by its expression (2), we are led to maximizing
the quantity:

a(1)T
(

∑M
m=1 XT

mYm ∑M
m=1 Y T

m Xm

‖ ∑M
m=1 Y T

m Xma(1) ‖
)

a(1) =

√√√
√a(1)T

(
M

∑
m=1

XT
mYm

M

∑
m=1

Y T
m Xm

)

a(1) (3)

Under the constraints stated above, the optimal solution is achieved by setting a(1)

to the eigenvector of (∑M
m=1 XT

mYm)(∑M
m=1 Y T

m Xm) associated with the largest eigen-
value.
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As a summing up, MGPLS consists in the following algorithm:

1. Set a(1) to the eigenvector of (∑M
m=1 XT

mYm)(∑M
m=1 Y T

m Xm) associated with the
largest eigenvalue;

2. Set b(1) = ∑M
m=1 Y T

m Xma(1)

‖∑M
m=1 Y T

m Xma(1)‖ ;

3. Compute group components: t(1)m = Xma(1) and u(1)m = Ymb(1);
4. Compute global components: t(1) = Xa(1) and u(1) = Yb(1).

An alternative algorithm to solve the maximization problem (1) is worth considering
since it does not involve an eigen-analysis solution and can easily be developed into
a NIPALS algorithm. It stems from remarking that, as stated above, for a fixed vector

a(1), the optimal solution for b(1) given by b(1) = ∑M
m=1 Y T

m Xma(1)

‖∑M
m=1 Y T

m Xma(1)‖ . Likewise, for a

fixed vector b(1), the optimal solution for a(1) is given by a(1) = ∑M
m=1 XT

m Ymb(1)

‖∑M
m=1 XT

m Ymb(1)‖ .
Therefore, an iterative algorithm to solve the maximization problem (1) consists in
alternatively updating a(1) and b(1) until convergence. The convergence is granted by
the fact that at each iteration, criterion (1) increases. Moreover, since this criterion is
upper-bounded, it follows that the sequence of values corresponding to this criterion
at the various steps of the iterative algorithm is convergent. This iterative algorithm
can be extended into a NIPALS-like algorithm:

1. Choose an initial value for a(1) with ‖a(1)‖= 1

2. Compute X group components: t(1)m = Xma(1)

3. Compute Y group vector of loadings: b(1)m =Y T
m t(1)m

4. Compute Y common vector of loadings: b(1) = ∑M
m=1 b(1)m

‖∑M
m=1 b(1)m ‖

5. Compute Y group components: u(1)m = Ymb(1)

6. Compute X group vector of loadings: a(1)m = XT
m u(1)m

7. Compute X common vector of loadings: a(1) = ∑M
m=1 a

(1)
m

‖∑M
m=1 a

(1)
m ‖

8. Iterate the process starting from step 2 until convergence.

A property of MGPLS which is worth mentioning is the following. We have al-
ready stated that criterion (1) leads to maximizing with respect to a(1) the quan-

tity
√

a(1)T ∑M
m=1 XT

mYm ∑M
m=1 Y T

m Xma(1). By recalling that t(1)m = Xma(1), this latter
expression can be written as:

√
M

∑
m=1

t(1)Tm Ym

M

∑
m=1

Y T
m t(1)m =

√√√
√

M

∑
m=1

n2
m

Q

∑
q=1

cov2(t(1)Tm ,ymq) (4)

where ymq is the qth variable in group m. This means that MGPLS aims at recovering
as much variation as possible in the datasets (Y1, . . . ,YM) by means of their associ-

ated group components (t(1)1 , . . . , t(1)M ) which are constrained to have the same vector
of loadings a(1).
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Other properties of MGPLS can also be highlighted:

• In the particular case where there is only one group of individuals (i.e., M = 1),
MGPLS amounts to PLS regression.

• If X = Y , then MGPLS is equivalent to MGPCA.
• We have already stated that a(1) is an eigenvector of (∑M

m=1 XT
mYm)(∑M

m=1 Y T
m Xm)

associated with the largest eigenvalue. Since ∑M
m=1 XT

mYm = XTY , we can con-
clude that a(1) and b(1) can also be obtained by performing PLS regression of Y
on X , where as indicated above Y and X are centered for each group. Notwith-
standing, the interest of the original presentation and its associated NIPALS

algorithm is to exhibit group components which may shed more light on the
relationships between X and Y .

2.3 Higher Order Solution

Once the first order common vectors of loadings and their associated group and
global components are determined, subsequent parameters can be computed fol-
lowing the same strategy of analysis after deflation. We chose to deflate the datasets
X and Y with respect to the global component t(1) = Xa(1). More precisely, the
datasets X and Y are replaced by X (1) = P(1)X and Y (1) = P(1)Y where P(1) =
(I− t(1)(t(1)T t(1))−1t(1)T ), I being the identity matrix. Thereafter, the same proce-
dure described in the previous section is run anew, thus leading to the second order

common vectors a(2) and b(2) and their associated group components: t(2)m =X (1)
m a(2)

and u(2)m = Y (1)
m b(2). Similarly to PLS regression, the group and global components

can be expressed in terms of the original variables instead of the deflated variables.
The same deflation procedure can be reiterated to compute subsequent vectors of
loadings and group and global components. A stopping criterion for choosing the
appropriate number of components to be included in the model will be discussed in
a subsequent section.

2.4 Prediction and Selection of the Appropriate Number
of Components

The usual practice in PLS regression to predict dependent variables from a dataset
which contains quantitative and categorical variables is to perform a dummy coding
(or 0/1 coding) of the categorical variables and, thereafter, run a PLS regression
using these dummy variables together with the quantitative variables as predictors.
This strategy of analysis has several shortcomings among which we single out the
fact that the number of components to be introduced in the model can be large and
the interpretation of the loadings vectors may not be easy [6].
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From MGPLS, a prediction model can be set up as follows. Let us denote by Y (0)

and X (0) the original data that is, the data before we have proceeded to centering by
group. We have:

X (0) = X̄ +X and Y (0) = Ȳ +Y (5)

where, as stated above, X and Y are the datasets centered by group and X̄ (resp. Ȳ )
is the dataset of the same dimensions as X (0) and X (resp. Y (0) and Y ) whose entry
corresponding to a given row (i.e., sample) and column (i.e., variable) is the average
value of the variable under consideration for the group to which the sample (in row)
belongs to.

From the outcomes of a MGPLS regression, let us consider that A (say) compo-
nents have been retained and let us denote by TA = (t(1), . . . , t(A)) the matrix formed
of the A first global components. Dataset Y can be predicted from X using these
components:

Y = TAB(A)
T +EA (6)

where B(A)
T is the matrix of regression coefficients and EA is the matrix of residuals.

Similarly to what is usually done in PLS regression, this model can be re-expressed
in terms of the variables in X , thus leading to:

Y = XB(A) +EA (7)

Finally, the original data Y (0) can be predicted from the model by:

Y (0) = Ȳ +XB(A)+EA (8)

More precisely, for a given variable y(0) in Y (0) and a given sample i which belongs
to group m, we have:

y(0)i = ȳm +
P

∑
p=1

b(A)p xip + ei (9)

where b(A)p are the regression coefficients associated with variable y(0) and ȳm is the
average value of y(0) for group m. Obviously, this model pertains to the Analysis of
Covariance (ANCOVA) class of models [7]. In this model, we analyze the effect of the
quantitative variables while controlling the effect of the grouping (i.e., categorical
variable). We do not assume an interaction between X and the categorical variable
because, from one group to another, the regression models differ only by a constant
(difference of the mean values).

For the choice of the appropriate number of components to be introduced in the
model, we use a validation technique such as cross-validation [11]. The method
K-fold cross-validation is applied to each group to ensure that we have sufficient
samples from each group. More precisely, each group is equally or nearly equally
divided into K subsets. In each iteration of the cross-validation process one sub-
set is included in the validation set while the K− 1 remaining subsets are put to-
gether as the training set. The training datasets are used to select the parameters of
the model, namely the regression coefficient matrix B, and the root mean square
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error of calibration (RMSEC) which reflects the fitting ability of the model. The
validation set is used to compute the root mean square error of validation (RMSEV )
which reflects the prediction ability of the model under consideration. Both errors
are computed according to:

RMSE(h) = ||Y (0)− Ŷ (0)(h)||/
√

Q for h = (1, . . . ,H) (10)

where Ŷ (0)(h) is the matrix of predicted values from a model with h components.
Thereafter, the cross-validation procedure is repeated several times and the two
types of errors (i.e. RMSEC and RMSEV ) are averaged over these repetitions. The
two average errors are functions of the number h = (1, . . . ,H) of latent variables to
be introduced in the model. Among all these models corresponding to the various
values of h, an appropriate model, with A components, which has a correct fitting
ability and a good prediction ability is retained.

2.5 Alternative Methods

Although the main aim of MANCOVA is to test for differences between group means
while controlling the effect of the co-variables (i.e., X variables), it is routinely
used to assess the impact of the X variables on Y variables while controlling the
effect of the grouping variables. However, the main disadvantages of this method
of analysis over our approach are the necessity of pre-supposing some assumptions
(e.g., normality, homogeneity of variances and covariances . . . ) and the sensitivity
to multicollinearity among the X variables.

Takane [12, 13] proposed multivariate data analyses to take account of external
variables on samples and variables. By comparison, our approach is more restric-
tive since we take account of the only information on the samples which can be
expressed in terms of groups. Nonetheless, as Takane’s methods of analysis pertain
to canonical and redundancy analysis, they are likely to lead to unstable methods
in presence of quasi-collinearity among variables. Moreover, we believe that MG-
PLS can be extended to a wider scope in order to take account of more information
on the samples. This extension will certainly draw inspiration from the research
work by Jorgensen et al. (2004) [6] and Næs et al. (2010) [10]. The former authors
discussed regression models to analyse both design (D) and predictive variables
(X). In particular, they introduced a strategy of analysis called Least Squares-PLS
(LS-PLS) that consists in an iterative combination of least squares and PLS regres-
sion. Although it seems that LS-PLS yields appealing outcomes, it has, nonetheless,
some convergence and optimality problems [6]. More importantly, MGPLS has very
strong family ties with Sequential and Orthogonalized Partial Least Squares (SO-
PLS) [10]. SO-PLS method is based on a blockwise estimation of the regression
parameters, where each regression is followed by an orthogonalization with respect
to the blocks already fitted. More precisely, in the particular case of two blocks of
data formed of a design matrix D and an explanatory block X , SO-PLS regression
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starts by fitting Y to the design matrix by means of PLS regression. Let us denote
by E the matrix of residuals. In a second stage, X is orthogonalized with respect
to the PLS components from the previous stage leading to matrix Xorth. Finally, the
matrix of residuals E is regressed upon Xorth using PLS regression. SO-PLS covers
a large scope of applications since it is proposed as a multi-block path modeling
approach with an exploratory purpose. In the particular case where we have a des-
ign matrix W1 = D derived from the coding of a grouping variable the prediction
of a dataset Y (0) by means of SO-PLS bears high similarities to Eq. (8). This finding
bestows a mutual credit to both MGPLS and SO-PLS and shows that there is a gap to
fill between the general framework offered by SO-PLS and MGPLS which tackles a
very specific situation.

3 Illustration

The data which are used to illustrate MGPLS are extracted from a large case study in
veterinary epidemiology. The population (N = 105) consists of a cohort of slaugh-
tered broiler chicken flocks from three slaughterhouses in France [9]. The aim of
this study is to assess and interpret the effect of (P = 12) explanatory variables
on (Q = 4) dependent variables, while taking into account the diversity among the
(M = 3) slaughterhouses. All these variables are described in Table 1. The categor-
ical variables were replaced by their associated dummy (or 0/1) variables. Since the
X variables are measured on different scales, they are standardized. Epidemiologists
are interested in identifying risk factors which lead to the mortality of the chicken,
while taking into account the diversity among the slaughterhouses.

Figure 2 shows the cumulative percentages of total variances explained by X
group components in the three slaughterhouses for X (Fig. 2a) and Y (Fig. 2b) vari-
ables. The increase of the total variance in the X variables as a function of the num-
ber of components introduced in the model has the same pattern from one group
to another. This is not the case for the Y variables since the first two components
in group 2 explain only a small amount of total variance in this group but a jump
in the total variance explained is observed from component 3 on. Group 1 shows
an inverse tendency since the first two components explain a higher percentage of
total variance than in group 2 but the increase of the curve depicting the cumulative
percentage of total variance slows down starting from dimension 2.

Figure 3 represents the variables on the basis of the common vectors of load-
ings associated with X and Y variables. Similarity to what is routinely done in PLS

regression, it is easy to highlight relationships between X and Y variables.
In order to assess the prediction ability of MGPLS and compare its performance

to usual methods of analysis, we performed a multi-group 10-fold cross-validation.
For each run, we performed MGPLS and, in parallel, we performed PLS on the
original datasets by ignoring the group structure among the individuals. We also
used a dummy coding of the memberships of the chicken to the three slaughter-
houses. Thereafter, we performed a PLS regression of the Y variables on the matrix
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Table 1: Abbreviations

Abbreviation Explanatory variables

Soak Cleaning step in decontamination of chicken house: yes (vs. no)
Sort Sorting practice: yes (vs. no)
Vitamin Vitamins and minerals during the starting period: yes (vs. no)
Homochick Homogeneity of chicks at placement: yes (vs. no)
Nbchick Number of chicks at placement
Homochicken Homogeneity of chickens at the end of rearing: yes (vs. no)
Strain Genetic strain: X (vs. other)
Locpb Locomotor disorder observed: yes (vs. no)
Antibio Antibiotic during the staring period
Tlairage Average temperature of waiting time on lairage
Stress Stress occurrence during rearing: yes (vs. no)
RainWind Meteorological conditions during lairage: rain and/or wind (vs. neither rain nor

wind)

Abbreviation Dependent variables

Mort7 First-week mortality rate
Mort Mortality rate during the rest of the rearing
Doa Mortality rate during the transport to slaughterhouse
Condemn Condemnation rate at slaughterhouse

Fig. 2: (a) (Left) cumulated percentages of variance for Xm and (b) (right) cumu-
lated percentages of variance for Ym. The labels (1,2,3) refer to the three slaughter-
houses

X augmented by the three dummy variables associated with the three slaughter-
houses. Figure 4a (resp. Fig. 4b) shows the values of RMSEC (resp. RMSEV ) as a
function of the number of global components introduced in the model for the three
strategy of prediction considered herein. It can be seen that MGPLS has a better
fitting ability since RMSEC is smaller than the other two methods for all the com-
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Fig. 3: Graphical display of the first two common loadings (a(1),a(2)) and
(b(1),b(2)) of MGPLS. The dependent variables are underlined

ponents. From the curve depicting RMSEV , it seems that a MGPLS model with two
components should be retained. However, the two other methods considered herein
have the same performance whether we include one or two components. As a matter
of fact, we have computed RMSEV for each of the four dependent variables sepa-
rately (data not shown herein) and it turned out that MGPLS outperformed the other
two methods except for the last variable. Further investigations are needed to explain
this finding.

Fig. 4: (a) (Left) shows root mean square error of calibration (RMSEC) and (b)
(right) shows root mean square error of validation (RMSEV ) for MGPLS, PLS-A
(ignoring the group structure) and PLS-B (X variables and three dummy variables)
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4 Conclusion

MGPLS is a method of investigation of the relationships between two datasets where
there is a priori known group structure. It is a straightforward extension of PLS

regression to this specific setting. It can also be regarded as an extension of MGPCA

[8] since it shares with this method the same underlying principle that is, seeking
group components that are constrained to have the same vectors of loadings.

MGPLS is based on a simple optimization problem whose solution is either given
by an eigen-analysis or a NIPALS-like algorithm. In comparison to competing meth-
ods such as MANCOVA or Takane’s methods of analysis [12, 13], MGPLS makes it
possible to handle the case of ill conditioned problems (i.e., highly multicollinear
datasets with, possibly, less individuals than variables). Moreover, the interpretation
of the outcomes is straightforward since we stick to the general framework of PLS

regression which is fecund of visualization tools and indices which can be helpful
for the practitioners to unveil hidden patterns in the data. Another appealing feature
of MGPLS is that it can be extended in several ways. For instance, we could consider
the case of more than one grouping variable, or the case of presence of interaction
between the grouping variables and the predictive variables. As stated above, all
these extensions will draw inspiration from SO-PLS [10] which offers an appeal-
ing and general scope to investigate the relationships between blocks of variables
taking account of their interweaving relationships. Indeed, we believe that by fill-
ing the gap between our specific method of analysis (MGPLS) and the more general
approach (SO-PLS) we help shedding more light on the possibilities offered by this
latter approach. Another possibility of extension of MGPLS is to consider the general
framework of multilevel (or hierarchical) regression [4] where the aim is to predict
dependent variables from predictive variables obtained at various levels (e.g., vari-
ables measured on animals that are nested into farms and variables measured on
farms). Ongoing research work on these topics is under progress.
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Employees’ Response to Corporate Social
Responsibility: An Application of a Non Linear
Mixture REBUS Approach

Omer Farooq, Dwight Merunka, and Pierre Valette-Florence

Abstract We examine the effect of perceived corporate social responsibility (CSR)
on employees’ affective organizational commitment through the mediation of
organizational trust and organizational identification. In so doing, the paper
advances current understanding by positing a curvilinear relationship between
CSR and organizational trust. We further suggest that employees use different pro-
cesses to develop commitment to their companies’ CSR initiatives. The test of the
research model relies on data collected from 378 employees in South Asia. We used
REBUS-PLS algorithm and identified three homogeneous employee groups that
can be further differentiated in terms of work-related attitudes and behaviors.

Key words: Partial least squares path modeling, REBUS-PLS, Non-linear path
modeling, Corporate social responsibility, Social exchange, Social identity

1 Introduction

Unlike previous studies that have examined the direct linear effect of perceived cor-
porate social responsibility (CSR) on affective organizational commitment (AOC),
this article examines the mediated link through organizational trust and organiza-
tional identification. In so doing, it advances current understanding by positing a
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curvilinear relationship between CSR and organizational trust. Social exchange and
social identity theory provide the foundation for predictions that the primary out-
comes of CSR initiatives are organizational trust and organizational identification,
which in turn affect AOC.

2 Theoretical Framework and Research Model

This study examines the influence of CSR on AOC through the mediation of organi-
zational identification and organizational trust. That is, we suggest two mechanisms
by which CSR influences AOC: social identity and social exchange. With these two
mechanisms, we propose that organizational identification and organizational trust
are the direct outcomes of the firm’s CSR initiatives and in turn positively affect
AOC.

2.1 CSR and Organizational Identification

Social identity theory suggests that the firm’s CSR actions have a direct effect on
employees’ organizational identification. That is, individuals strive to achieve or
maintain a positive social identity [1], which they can derive from membership in
different groups [4]. Hogg et al. [19] illustrate that among these groups, membership
in business organizations may be the most important component, and they refer
to it as organizational identification, defined as the “perception of oneness with or
belongingness to an organization, where the individual defines him or herself in
terms of the organization(s) in which he or she is a member [24].”

Tyler [41] further suggests that employees use the status or social standing of
their organization to evaluate their self-worth. Therefore, employees prefer to iden-
tify with organizations whose images seem prestigious or whose identity enhances
their self-worth and meets their need for self-enhancement [25, 36, 37]. Organiza-
tional identification thus derives from the image and perceived prestige of the orga-
nization (e.g. [43]). We argue that firm investments to support societal, environmen-
tal and consumer welfare are positively valued, such that they lead people to eval-
uate the organization positively. In turn, CSR actions should have a strong impact
on the firm’s external image. Extant research also shows that a firm’s philanthropic
and community development actions enhance its corporate image and external pres-
tige (e.g. [6]). Because CSR actions enhance this image, employees feel proud
to associate with the responsible company, which enhances their self-worth and
self-esteem.

In addition, an employee’s respect for the organization could influence his or
her identification with that organization [42], because it enhances perceived status
within the organization. We therefore suggest that internal CSR actions also con-
tribute to employees’ organizational identification. Because all CSR actions thus
appear contribute to organizational identification, we propose:
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Hypothesis 1: Employee perceptions of the firm’s CSR initiatives positively influence
their organizational identification.

2.2 CSR and Organizational Trust

Social exchange theory (SET) explains the relationship between CSR and organiza-
tional trust, using a dominant theoretical paradigm for understanding relationships.
One of the basic tenets of SET is the rule of reciprocity [5]: if one person supplies
a benefit, the receiving party should respond in kind [15]. In a social exchange, one
party voluntarily provides a benefit to another, invoking an obligation to reciprocate
by providing some benefit in return [44].

In direct (or restricted) exchanges, two actors grant benefits in a relation of direct
reciprocity, whereas in indirect (or generalized) exchanges, each actor provides and
ultimately receives benefits, but not to and from the same actor. We suggest that
CSR has the capacity to induce both direct and indirect social exchanges between
employees and the firm, because both forms entail some type of reciprocity [28]. For
example, when the firm provides benefits to its employees beyond its legal and fi-
nancial obligations, it obliges them to pay it back, directly and in kind. Furthermore,
the actions the firm takes for the welfare of the society, environment, and consumers
may invoke indirect social exchanges with employees. As part of the community,
country, or global habitat, employees should consider societal and environmental
responsibilities important; we draw this argument from Handelman et al. [16], who
suggest that “a company’s actions appeal to the multidimensionality of the people
as not only an economic being but also as a member of a family, community and
country.” Handelman et al. [16] further recognize that people are conscious of not
only their personal well-being but also of other stakeholder groups, of which they
are actual or potential members. From this perspective, employees could indirectly
reciprocate actions that a firm takes for the welfare of community, society, the envi-
ronment, and consumers.

Furthermore, according to SET, trust between the parties is a primary outcome
of social exchange relationships [3]. Both Blau [5] and Holmes [20] identify trust as
an important outcome of favorable exchanges, and Ekeh’s [12] elaboration of Levi-
Strauss’s thesis proposes that trust is the most important consequence of both direct
and indirect reciprocity. Therefore, we propose:

Hypothesis 2: Employee perceptions of the firm’s CSR initiatives positively influence
their organizational trust.

We also consider a potential curvilinear relationship between CSR and organi-
zational trust. That is, CSR may breed stakeholder cynicism (e.g. [23]) if they are
skeptical of the firm’s intentions for engaging in CSR [33] or suspect greenwashing.
Therefore, the relationship between CSR and trust may be subject to a saturation
effect, such that very high levels of CSR initiatives appear excessive and guided not
by benevolence or altruism but by internal goals, such as corporate or brand image.
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The credibility of the CSR initiatives then is at stake. Matheson et al. [26] sug-
gest that increasing environmental initiatives by companies are making people more
cynical; the broad saturation effect illustrates how the strength of an inducement
can diminish with greater intensity of the inducement, past a saturation point. We
apply this principle to CSR and employees and predict that the effect of CSR on
employees’ trust diminishes at higher levels of perceived CSR.

Stakeholders also express some expectations about the CSR of the firm (e.g.
[46]). Stakeholders actively monitor companies’ behaviors to evaluate how well
they meet expectations [47], namely, if they fulfill, underfulfill, or overfulfill ex-
pectations. Literature on employees’ psychological contracts shows that when an
employer meets employees’ expectations, psychological contract fulfillment exists,
whereas if it does not, psychological contract breach occurs (e.g. [22]). We also
note the strong positive relationship between psychological contract fulfillment and
trust, along with a negative relationship between psychological contract breach and
trust (e.g. [10]). The overfulfillment of expectations is another form of psycholog-
ical contract breach [21, 29] that can minimize organizational trust. Therefore, at
high levels of CSR, employees may perceive a psychological contract breach and
lose trust in their organization. We suggest that overfulfillment of CSR expectations
suggests the potential for greenwashing, with its associated loss of credibility and
negative impact on employees’ trust in the company. We therefore propose:

Hypothesis 3: The relationship between CSR and organizational trust is quadratic,
such that when CSR increases beyond a saturation point, its positive influence on
employees’ organizational trust decreases.

2.3 Impact of CSR on AOC: Organizational
Identification Mediation

In the context of social identity, AOC is a critical outcome, closely related to identi-
fication. Affective organizational commitment is “an employee’s emotional attach-
ment to, identification with, and involvement in the organization [2],” so though
both organizational identification and AOC indicate psychological links between
employees and the organization, the former is generally considered an antecedent
of the latter. Pratt [32] specifically suggests that organizational identification is a
cognitive perceptual construct that causes attitudes such as AOC. We posit in turn
that employees who identify with their company are committed, because their iden-
tification maintains their external prestige and internal respect. The firm’s positive
external prestige, which enhances employee self-esteem and fulfills social identity
needs, also keeps the employees committed to that company. Employee commit-
ment increases with the level of CSR initiatives, because employees feel increas-
ingly proud to identify with a firm and its positive external prestige. Therefore,
CSR should affect AOC through the mediation of organizational identification, a
claim that receives further support from studies that indicate a positive relationship
between organizational identification and AOC [35].
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Hypothesis 4a: There is a positive relationship between employees’ organizational
identification and affective organizational commitment.

Hypothesis 4b: Organizational identification mediates between CSR and employees’
affective organizational commitment.

2.4 Impact of CSR on AOC: Organizational Trust Mediation

Organizational trust is another essential condition for AOC; Blau [5] even notes that
“the establishment of exchange relations involves making investments that consti-
tute commitment to the other party. Since social exchange requires trusting others
to reciprocate, the initial problem is to prove oneself trustworthy.” Firms’ CSR initi-
ates a social exchange between the firm and its employees, with both organizational
trust and organizational commitment as potential outcomes. That is, organizational
trust results from CSR and in turn influences commitment. Abundant research re-
veals that organizational trust is a strong predictor of organization commitment (e.g.
[9]), so we posit:

Hypothesis 5a: There is a positive relationship between employees’ organizational
trust and affective organizational commitment.

Hypothesis 5b: Organizational trust mediates between CSR and employees’ affec-
tive organizational commitment.

3 Methodology

We focused on local and multinational companies in the grocery, food, personal
care, and household products categories in Pakistan. We selected 11 companies
that publish sustainability and CSR-related information on their websites; publi-
cally available information also indicates that these companies have been involved
in topical CSR issues. Employees therefore should have CSR-related perceptions
about their employers.

We contacted sources in the targeted companies and sought permission and sup-
port for our data collection. The data were collected face-to-face using a question-
naire. We obtained 392 responses, though the final sample contained 378 (86%
male, 14% female) respondents across different age groups (40% between 18–
28 years of age, 45% 29–40 years, and 15% older than 40 years). Regarding educa-
tion, 29% of these respondents had less than a bachelor’s degree, 46% had earned
a bachelor’s degree, and 25% held master’s degrees. Furthermore, 72% of the re-
spondents were non-management employees, and 28% respondents were functional
managers.
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3.1 Measurements

To measure CSR, we rely on perceptual measures reported by the employees.
Specifically, we adapt instrument developed by Turker [39, 40], which contained
16 items: four items to measure environmental CSR, three to measure societal CSR,
six items for internal CSR, and three measures of product CSR. All items used
seven-point Likert scales (1 = “extremely disagree” to 7 = “extremely agree”). We
also pre-tested the instrument with 19 MBA students and modified the wording of a
few items.

For organizational identification, we rely on a five-item revised version of Mael
et al. [24] scale, which has shown good reliability in previous research. Organiza-
tional trust was measured by a three-item scale [31], and for AOC, we used Meyer
et al. [27] abridged five-item scale.

3.2 Data Analyses

We selected a PLS structural equation modeling (SEM) approach, because of its
minimal demands for sample size and ability to handle model complexity or viola-
tions of multivariate normality [13, 38, 45]. Our study features rather small sample
sizes, particularly at the segment level, and the large, complex model involves sev-
eral indicators and latent variables. For example CSR is defined as a second order
formative construct with first order reflective latent indicators. Because prediction
represents a major purpose of this analysis, we used a two-stage approach to deal
with nonlinear relationships between CSR and trust. Although another approach to
handle quadratic latent variables effect by means of squared indicators exists in lit-
erature (e.g. [30]) and seems preferable in other circumstances, we followed recent
recommendations made in the case of formative latent variables [8, 17, 18]. That is,
we first estimated the model with only linear terms and computed the factor scores
for the latent variables. Then, we created a single indicator for the nonlinear term
by transforming the linear term factor score, and we reestimated the model, includ-
ing both the linear term and its indicators and the nonlinear term with its single
indicator.

Hence, we used REBUS-PLS to identify homogeneous groups of employees
[14]. This approach offers interesting features compared with existing response-
based clustering techniques in a PLS-PM framework, such as finite-mixture PLS
(FIMIX-PLS; [34]). As a distribution-free approach, REBUS-PLS is consistent with
PLS basic principles, and it aims to detect sources of heterogeneity in both structural
and outer models for all exogenous and endogenous latent variables. In REBUS-
PLS, the distance of any unit from the model is defined by the model performance,
in terms of residuals related to the structural and measurement models for all avail-
able latent variables. The measure of this distance is a sum of the squared residuals,
usually referred to as a closeness measure. When homogeneous groups have been
identified, multigroup comparisons support an assessment of the level of measure-
ment invariance across segments.
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After obtaining the different REBUS segments, we performed multigroup com-
parisons and permutation tests [7] for the full model (see Fig. 1). Regarding the
measurement of the first-order latent variables, permutation tests indicate that less
than 10% of the variables slightly vary across the three REBUS segments. More
important, there is no difference between segments in the path coefficients related
to the definition of the formative second-order CSR construct. Results indicate that
the three REBUS segments behave very differently in their use of the trust or iden-
tification path toward the influence on commitment (see Table 1). We observe that
all the R-square values obtained at the group level are higher than those computed
on the pooled data. For Groups 1, 2, and 3, the trust R-squares are 0.35, 0.46, and
0.60 (0.34 at the aggregate level), those for identification are 0.44, 0.48, and 0.53
(0.37 aggregate), and the values for commitment are 0.34, 0.41, and 0.53 (0.29 ag-
gregate), respectively. Therefore, the model constructs are better explained at each
group level than at the aggregate level.

Fig. 1: Full estimated model

All in all, and according to the significant path coefficients, all the hypotheses
have been validated and more particularly with regards to the mediating role of both
trust and commitment. In addition, the REBUS PLS analysis shows that discovering
sources of heterogeneity was worth investigating.
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4 Main Contributions and Discussion

Employees use different processes to develop commitment to their companies’ CSR
initiatives; specifically, three homogeneous employee groups can be differentiated
in terms of work-related attitudes and behaviors. The test of the research model
relies on data collected from 378 employees of local and multinational companies
in South Asia, with partial least squares path modeling to test both the linear and
nonlinear postulated relationships. Organizational trust and organizational identifi-
cation mediate between CSR and AOC, and the relationship between CSR and trust
is curvilinear with a saturation point. In the employee groups, some employees de-
rive their AOC through trust, whereas others derive it from identification. Employees
who derive their AOC through organizational identification exhibit higher intrinsic
motivation, knowledge-sharing behavior, readiness for change and perceptions of
their participation in decision making.

At a high level of CSR, its influence on trust decreases. We uncover an inverse
quadratic relationship between CSR and organizational trust, which could be a re-
sult of a saturation effect [26]. Greater environmental initiatives by companies might
cause people to become cynical and perceive related actions as greenwashing. Our
findings strengthen recent results that suggest CSR sometimes breeds cynicism and
suspicion (e.g. [23]). We therefore demonstrate that CSR does not affect AOC di-
rectly, because mediating mechanisms (social identity and social exchange) better
explain this relationship. Both trust and identification are strong mediators between
CSR and AOC; we reveal the process by which CSR finally influences AOC. This
new finding has potentially far-reaching implications. If trust and identification are
influenced by CSR, other behavioral outcomes related to these two variables also
may be affected by the CSR initiatives of the firm. For example, organizational
trust and identification are antecedents of work-related outcomes, such as turnover
intentions, absenteeism, job satisfaction, and motivation. Testing whether these be-
havioral outcomes are also affected by CSR is an interesting area for research.

From a methodological standpoint, our use of PLS path modeling has proved
particularly appropriate for our model and data. Because we included both forma-
tive and reflexive constructs in the model, gathered a relatively small sample size (at
the segment level), and confronted non-multivariate normality, our use of PLS path
modeling was fully justified. In addition, PLS proves very useful when one wants
to further utilize the latent factor scores in subsequent analyses. Whereas traditional
covariance structure analysis (CSA) can hardly treat nonlinear relationships at the
structural level, the use of latent scores enables modeling any kind of nonlinear
links, following Ringle et al. [34]. Consequently, we were able to test the postu-
lated non-linear relationship between CSR perceptions and organizational trust and
to establish the existence of a saturation effect. The PLS approach is designed as a
distribution free estimation technique [45]. Hence, contrary to the FIMX approach
that deals with multivariate distribution at the latent level, the REBUS methodol-
ogy does not require any specific distribution of either the measurement variables
or the latent variables and then, paraphrasing Wold [45], fits into the PLS frame-
work like hands in gloves. With PLS-REBUS, we detected sources of heterogene-
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ity in all exogenous and endogenous latent variables and all model relationships.
Beyond the identification of three groups and the contrasted processes through
which CSR might affect AOC, the PLS-REBUS approach pursued in this research
enabled us to reconsider the postulated links between two constructs. For example,
we hypothesized a saturation effect between CSR and trust, which we established at
the aggregate level, but the closer examination at the group level indicated that this
saturation effect applied only to the identification-based and mixed groups. When
employees rely on organizational trust to develop AOC, the relationship between
CSR and trust becomes monotone and increasing (i.e., more CSR increases the trust
level without any saturation effect). Finally, the three REBUS segments exhibit the
highest R2 and structural path coefficients between latent variables when compared
to the PLS solution computed at the aggregate level.

Finally, these results have significant practical implications for firms’ CSR strate-
gies. In particular, CSR strongly influences employees’ identification, trust, and
AOC, which emphasizes the instrumental value of CSR and the payoff from linked
corporate investments. Because employees’ attitudes and behaviors constitute in-
tangible resources that are valuable, rare, difficult to imitate, and lacking in perfect
substitutes, CSR leads to intangible resources for the firms. Identification and trust
significantly affect work- and job-related variables such as commitment, motivation,
and turnover intentions, which are important for competitive advantages [11]. Con-
sequently, CSR assists in creating a competitive advantage by developing a work-
force that effectively carries out the firm’s business strategy, leading to improved
business performance. Firms with strong CSR practices in turn may develop higher
productivity because of their employees’ motivation, knowledge sharing, reduced
absenteeism, and extra-role behavior, as well as cost benefits due to low turnover.
Our results thus illustrate that the benefits of corporate contributions to communi-
ties are not restricted to external reputation and external stakeholder management
but also may be reflected in the positive behaviors of internal stakeholders.
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Extending the PATHMOX Approach to Detect
Which Constructs Differentiate Segments

Tomas Aluja-Banet, Giuseppe Lamberti, and Gastón Sánchez

Abstract In most cases, path modeling data come from surveys or researches
that contain more information (i.e., observed heterogeneity) than is used for the
path models definition. For instance, in many marketing studies like those of con-
sumer satisfaction, it is usual to collect socio-demographic variables and psycho-
demographic variables such as age, gender, social-status, or consumers’ habits that
take no part in the path model but that can be extremely useful for segmentation pur-
poses. In 2009, Gastón Sánchez introduced the PATHMOX methodology to incor-
porate the available external variables to identify different segments. The algorithm
solves this problem by building a binary tree to detect those segments present in the
population that cause the heterogeneity. The F-global test, based on the Fisher’s F
for testing the equality of two regression models, is adapted and used, as a splitting
criterion, to discover whether two structural models calibrated from two different
segments (i.e., two successors of a node), can be considered to be different. How-
ever PATHMOX does not identify which of the block or variables indicators are re-
sponsible for the heterogeneity. In this article we propose to extend the PATHMOX
methodology to test the equality of every endogenous equation of the structural
model in order to compare all path coefficients of the structural model estimated in
two segments.
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CTEG, Unité de Recherche de Sensométrie et Chimiométrie (USC INRA), ONIRIS,
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1 The PATHMOX Approach

In 2009, Gastón Sánchez proposed the PATHMOX algorithm with the purpose to
develop a new segmentation approach for observed heterogeneity in Partial Least
Squares Path Models (PLS-PM) ([7]). This technique adapts the principles of binary
segmentation processes, to produce a segmentation tree with different path models
in each of the obtained nodes.

PATHMOX does not involve any prediction purpose, but rather an identification
goal (i.e., to detect different path models present in the data). For this purpose, the
PATHMOX approach identifies a set of splits (based on the segmentation variables)
with superior discriminating capacity in the sense of separating PLS-PM models as
much as possible. Here a split criterion based on Fisher’s F for testing the equal-
ity of regression models ([1–6]), has been adapted to decide whether two structural
models, calibrated from two different segments (successors of a node), can be con-
sidered to be different. We will call it the F-global test. To identify the existence of
different path models the technique performs a procedure that can be summarized
in the following algorithm:

Algorithm 5 PATHMOX algorithm

Step 1. Start with the global PLS path model at the root node
Step 2. Establish a set of admissible partitions for each segmentation variable in each node of the tree
Step 3. Detect the best partition by:

3.1. Compare all binary partitions in all segmentation variables
3.2. Apply the F-global test, calculating for each comparison a p-value
3.3. Sort the p-values in a descending order
3.4. Chose as the best partition the one associated to the lowest p-value

Step 4. If (stop criteria1 = false) then
repeat step 3

1. Posible stop criteria:
a. The number of individuals in the group falls below a fixed level
b. The p-values F-global test are not significant
c. Maximum level of tree’s depth attained

Before discussing the extension of the PATHMOX approach to detect the sources
of heterogeneity, we illustrate in Sect. 2 how PATHMOX works. For this demonstra-
tion we consider a customer satisfaction model for three Spanish mobile carriers.
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2 PATHMOX Application: Estimation of a Customer
Satisfaction Model for Three Spanish Mobile Carriers

The data come from a survey collected on 87 customers and 26 questions grouped in
7 sets regarding 7 latent variables (showed in Table 1). In addition to the 26 manifest
variables, 7 segmentation variables are considered: gender (female–male), age (less
then 25–more-equal then 25), occupation (employee–student), education (basic–
high-school–university), type of contract (contract–prepay), carrier ( A–B–C), and
switch of provider (YES–NO).

Table 1: Description of latent variables of Mobile’s dataset

LV Description
Image Includes variables such as trustworthiness, dynamic, solidness, innovation, and car-

ing about customer’s needs
Expectation Includes variables such as products and services provided and expectations for the

overall quality
Quality Includes variables such as reliable products and services, range of products and ser-

vices, and overall perceived quality
Complaints Includes one variable defining how well or poorly customers’ complaints were han-

dled
Value Includes variables such as service and products, quality relative to price, and price

relative to quality
Satisfaction Includes variables such as overall rating of satisfaction, fulfillment of expectations,

satisfaction relative to other phone providers
Loyalty Includes variables such as propensity to choose the same phone provider again, in-

tention to recommend the phone provider to friends

We begin with the calculation of the global PLS model for all customers (Fig. 1).
For the main constructs of the model: satisfaction and loyalty, we have the following
latent equations:

satisfaction = 0.4887× image+0.0913×expectation−0.0289×quality + 0.4870×
value

loyalty = 0.2948× image +0.4889× satisfaction +0.1312× complaints.
We can see that the main drivers of satisfaction are image and value, whereas, in

the case of loyalty, are image and satisfaction.
Figure 1 shows the relation between all the latent variables, under the assumption

that the model is valid for all customers. But, how can we be sure of this hypothesis?
To answer this question, we apply PATHMOX to the data.

In Fig. 2, we present the obtained tree where we can observe that in fact there are
three PLS-PM models. At the first split, PATHMOX defines two different models
one for customers of carrier A, and the other, for customers of carriers B and C.
We can see that the produced split is highly significant, as it gives an F-statistic
of 3.5448 with has p-value smaller close to zero (i.e., smaller than 0.0001). The
node of customers of carrier A (Node 2) is taken as final because it contains only 12
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Fig. 1: Inner model of mobile data

Fig. 2: PATHMOX’s segmentation tree

individuals, which is below the threshold of 15 % of total population imposed by the
splitting criterion.1 The tree continues by splitting the customers of carriers B and
C (Node 3). The most significant split is obtained by the variable gender, giving an

1 The criterion of minimum number of individuals avoids the fragmentation of small nodes. The
minimum threshold is not a prefixed parameter in PATHMOX, but must be determined by the
analyst. Generally it is chosen between 10 and 15 % of the total number of individuals, depending
on the total size of population, to obtain consistent groups because it does not make sense to split
small nodes
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F-statistic of 2.3342 with a p-value of 0.0067, obtaining a child node with the male
customers and another with female customers. This ends the splitting process, as the
maximum depth of two levels has been reached. Hence, at the end, we have three
final segments each corresponding to distinct PLS-PM models: Node 2 model of
carrier A customers, Node 6 model of carriers B-C male customers, Node 7 model
of carriers B-C female customers.

In Fig. 3, we present the PLS-PM models corresponding to the three segments.
We can see that the customers of carrier A are the most influenced by the image of
the company on either satisfaction or loyalty, whereas for male customers of carriers
B and C, we can see that the value is the most important asset for satisfaction, in
the same way it is the most important for loyalty. Looking at the female customers
of carriers B and C, we can observe that image and value are more balanced on
satisfaction and that the care service in complaints is important for loyalty.

Fig. 3: PLS: PM of three PATHMOX child nodes

3 Extending the PATHMOX Approach

As we can see, the PATHMOX approach allows us to detect the existence of differ-
ent path models in a data-set without identifying segmentation variables beforehand:
the different segments are revealed as branches of the segmentation tree. However
the F test used in PATHMOX as split criterion is a global criterion: it allows assess-
ing whether all the path coefficients for two compared structural models are equal
or not, but it does not indicate which particular endogenous equation and which
path coefficients are responsible of the difference. For instance, when PAHTMOX
detects a difference between two groups such as A customers and B-C customers,
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we do not know which ones of the six structural equations (one for each endoge-
nous latent variable) is responsible of the detected difference. Also, if we have a
significant difference in one structural equation—for instance in satisfaction—we
do not know what path coefficient is responsible (i.e., image, expectation, value, or
quality). To identify the significant distinct endogenous equation and the responsible
path coefficients of the split, we introduced the F-block test and the F-coefficient
test.

3.1 F-Block Test

To detect which endogenous regression (i.e., endogenous equation) is responsible
for the global difference, we have extended the F-global test, to compare the equal-
ity of each endogenous equation of the structural model. We will call F-block the
statistic of this comparison (or block-test). Let us consider a structural model (see
Fig. 4) with two endogenous variables, η1 and η2 and two exogenous variables ξ1,
ξ2:

Fig. 4: Structural model of simulation study

The structural equations for both endogenous constructs are:

η1 = β1ξ1 +β2ξ2 + ζ1 (1)

η2 = β3ξ3 +β4ξ4 +β5η1 + ζ2. (2)

The disturbance terms ζ1 and ζ2 are assumed to be normally distributed with zero
mean and finite variance, that is, E(ζ1) = E(ζ2) = 0 and Var(ζ1) = Var(ζ2) = σ2

I. It is also assumed that Cov(ζ1,ζ2) = 0.
We define the following matrices:

X1 = [ξ1,ξ2] a column matrix with the explicative latent variables of η1

B1 = [β1,β2] a vector of path coefficients for the regression of η1

X2 = [ξ1,ξ2,η1] a column matrix with the explicative latent variables of η2
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B2 = [β3,β4,β5] a vector of path coefficients for the regression of η2

Then, the structural equations are expressed as:

η1 = X1B1 + ζ1 (3)

η2 = X2B2 + ζ2 (4)

We assume that the parent node is divided in two child nodes or segments, one
containing nA elements and the other containing nB observations. For each segment
we compute a structural model:

Segment A : ηA
1 = XA

1 BA
1 + ζ A

1 and ηA
2 = XA

2 BA
2 + ζ A

2 (5)

Segment B : ηB
1 = XB

1 BB
1 + ζ B

1 and ηB
2 = XB

2 BB
2 + ζ B

2 (6)

with ζ A
1 ∼ N(0,σ2I), ζ A

2 ∼ N(0,σ2I),ζ B
1 ∼ N(0,σ2I), and ζ B

1 ∼ N(0,σ2I).
Let us assume that the F-global test gives a significant p-value. We want to in-

vestigate which equation is the endogenous equation responsible of the difference.
For the sake of simplicity, we want to test whether the first endogenous equation is
equal in both segments while letting the second equation free to vary. In this case,
the null hypothesis, H0, is that the endogenous equation showed in (1) is equal for
segments A and B, while the alternative hypothesis, H1, is that the all endogenous
equations are different. The two hypothesis can be written as follows:

H0 :

⎡

⎢
⎢
⎣

ηA
1

ηA
2

ηB
1

ηB
2

⎤

⎥
⎥
⎦

[2n,1]

=

⎡

⎢
⎢
⎣

XA
1 0 0
0 XA

2 0
XB

1 0 0
0 0 XB

2

⎤

⎥
⎥
⎦

[2n,p1+2p2]

⎡

⎣
β1

β A
2

β B
2

⎤

⎦

[p1 +2p2,1]

+

⎡

⎢
⎢
⎣

ζ A
1

ζ A
2

ζ B
1

ζ B
2

⎤

⎥
⎥
⎦

[ 2n,1]

(7)

H1 :

⎡

⎢
⎢
⎣

ηA
1

ηA
2

ηB
1

ηB
2

⎤

⎥
⎥
⎦

[ 2n,1]

=

⎡

⎢
⎢
⎣

XA
1 0 0 0
0 XA

2 0 0
0 0 XB

1 0
0 0 0 XB

2

⎤

⎥
⎥
⎦

[ 2n,2p1 +2p2]

⎡

⎢
⎢
⎣

β A
1

β B
1

β A
2

β B
2

⎤

⎥
⎥
⎦

[2p1 +2p2,1]

+

⎡

⎢
⎢
⎣

ζ A
1

ζ A
2

ζ B
1

ζ B
2

⎤

⎥
⎥
⎦

[ 2n,1]

(8)

where n= nA+nB is the number of elements in the model containing the two nodes;
p j is the number of explicative latent variables for each j-th endogenous construct
j = 1, . . . ,J (in this example J = 2). We define the matrices X0, and X corresponding
two both hypothesis as:

X0 =

⎡

⎢
⎢
⎣

XA
1 0 0
0 XA

2 0
XB

1 0 0
0 0 XB

2

⎤

⎥
⎥
⎦

[ 2n,p1 +2p2]

X =

⎡

⎢
⎢
⎣

XA
1 0 0 0
0 XA

2 0 0
0 0 XB

1 0
0 0 0 XB

2

⎤

⎥
⎥
⎦

[ 2n,2p1 +2p2]

(9)
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Then we can see that X0 = XA with matrix A defined as:

A =

⎡

⎢⎢
⎣

Ip1 0 0
0 Ip2 0

Ip1 0 0
0 0 Ip2

⎤

⎥⎥
⎦

[ 2p1 +2p2,p1 +2p2].

(10)

Where Ip j is the identity matrix of order p j. We can apply Lemma 2 from Lebart
[6] to test the H0 hypothesis by computing the following F statistic with (p1) and
2(n− p1− p2) degrees of freedom.

FBlock =

(SSH0 − SSH1)

/

p1

SSH0

/

2(n− p1− p2)

(11)

3.2 F-Coefficient Test

Let us now suppose that the difference between the first structural equation in Seg-
ments 1 and 2 is significant, (i.e., Segment A differs from segment B). We want to
investigate which are the responsible coefficients for this difference. Let us consider
the same structural model showed in Fig. 4. For sake of simplicity we want to test
the equality of coefficient β1, of the first equation in both segments. We re-adapt the
same global F test to this situation. The two hypotheses are written as follow:

H0 :

⎡

⎢
⎢
⎣

ηA
1

ηA
2

ηB
1

ηB
2

⎤

⎥
⎥
⎦

[2n,1]

=

⎡

⎢
⎢
⎣

ξ A
1 ξ A

2 0 0 0 0 0 0 0
0 0 ξ A

3 ξ A
4 ηA

1 0 0 0 0
ξ B

1 0 0 0 0 ξ B
2 0 0 0

0 0 0 0 0 0 ξ B
3 ξ B

4 ηB
1

⎤

⎥
⎥
⎦

[2n,2∑P
j=1 pj−1]

⎡

⎢⎢
⎢
⎢
⎢
⎣

β1

β A
2

β A
3
...

β B
5

⎤

⎥⎥
⎥
⎥
⎥
⎦

[2∑P
j=1 pj −1,1]

+

⎡

⎢
⎢
⎣

ζ A
1

ζ A
2

ζ B
1

ζ B
2

⎤

⎥
⎥
⎦

[ 2n,1]

(12)

H1 :

⎡

⎢
⎢
⎣

ηA
1

ηA
2

ηB
1

ηB
2

⎤

⎥
⎥
⎦

[ 2n,1]

=

⎡

⎢
⎢
⎣

ξ A
1 ξ A

2 0 0 0 0 0 0 0 0
0 0 ξ A

3 ξ A
4 ηA

1 0 0 0 0 0
0 0 0 0 0 ξ B

1 ξ B
2 0 0 0

0 0 0 0 0 0 0 ξ B
3 ξ B

4 ηB
1

⎤

⎥
⎥
⎦

[ 2n,2∑P
j=1 pj]

⎡

⎢⎢
⎢
⎢
⎢
⎣

β A
1

β A
2

β A
3
...

β B
5

⎤

⎥⎥
⎥
⎥
⎥
⎦

[2∑P
j=1 pj ,1]

+

⎡

⎢
⎢
⎣

ζ A
1

ζ A
2

ζ B
1

ζ B
2

⎤

⎥
⎥
⎦

[ 2n,1]

(13)

Denoting X0 the design matrix of the null hypothesis and X the design matrix of the
alternative hypothesis, we have X0 = XA, where:
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A =

⎡

⎢
⎢
⎣

1 1 0 0 0 0 0 0 0
0 0 1 1 1 0 0 0 0
1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 1 1

⎤

⎥
⎥
⎦

[ 2p1 +2p2,p1 +2p2]

(14)

Then, as before, applying Lemma 2 from Lebart [6], we can test the H0 hypothesis
computing the following F-coefficient statistic with 1 and 2(n∑P

j=1 p j) degrees of
freedom.

FCoe f f icient =

(SSH0− SSH1)

/

1

SSH0

/

2(n∑P
j=1 p j)

(15)

4 Simulation

In order to evaluate the sensitivity of the split criterion used in F-global, F-block and
F-coefficient test, we run a series of Monte Carlo simulations. We have evaluated
the performance of the test under different experimental conditions.The factors of
the experimental design are the following: distribution of data, difference between
coefficients, sample of size, variances of the endogenous error terms. We have con-
sidered the same structural model of (1) with two endogenous variables, η1 and η2,
and two exogenous variables ξ1, ξ2.

4.1 Experimental Factors

4.1.1 Data Distributions

To detect the behavior of the tests with different data distributions, we generate
the exogenous constructs ξ1 and ξ2 as realizations from a beta distribution β(a,b). In
order to take into account both symmetry and skewness in distributions for the latent
variables, three cases of parameters a and b for the beta distribution are considered:
β(6,6), β(9,4), β(9,1).

4.1.2 Differences Between Coefficients

The model has been estimated in two segments A and B, varying the levels of the
difference between path coefficients, that is, they can be EQUAL in both segments,
or the difference can be SMALL, MEDIUM and LARGE, meaning that we have
added +0, +0.3, +0.5, and +0.8 respectively to the corresponding path coefficients
of segment A. All the coefficients in the model have been modified in the same way.2

2 When, for example, the SMALL difference scheme is considered, 0.3 is added to all the coeffi-
cients for segment A
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4.1.3 Size

We consider five sample sizes as the total number of cases: {100, 200, 400, 500 and
1,000}. We take balanced segments in all cases.

4.1.4 Variance of Endogenous Terms

We assume that the error term ζ follows a normal distribution with zero mean and
three different levels of variance. The levels are chosen such that the variance of ζ
accounts for 10, 20, 30, 50 and 90 % of the total variance of η .

In total, we have 3× 4× 5× 5 = 300 scenarios, which are the number of pos-
sible combinations of sample sizes, beta distributions, noise levels, and difference
between coefficients. We run ten repetitions for each experimental condition.

5 Results of the Simulation Study

We present the results of the simulations in two parts. In the first part we want to
verify if the three F-tests have the same sensitivity to detect heterogeneity. The be-
havior is evaluated with respect to: real difference between coefficients, distribution
of data, sample size and levels in error variance terms. In the second part we want
to verify if the three F-tests are consistent with respect to the distribution of data,
sample size and levels in error variance terms.

5.1 Analysis of the Behavior of F-Global, F-Block,
and F-Coefficient

We use the simulation to illustrate the behavior of these three tests regarding the dif-
ferent sample sizes (100, 200, 400, 500, and 1,000), the different distributions, and
the different levels in error variance terms of the endogenous construct. In Fig. 5 we
present the boxplots of the p-values according to the different levels of experimental
factors: differences between path coefficients, sample size, variance of disturbance
terms, and data distribution. The results indicate that the three tests present a very
similar behavior. We can see that:

1. There is a clear effect of the differences between the path coefficients in the two
segments: the more different the path coefficients the more sensitive the tests.

2. There is a clear effect of sample size: the larger the sample size the more sensi-
tive the tests.

3. There is no apparent effect of the data distribution on the sensitivity of the tests.
4. There is a clear effect of the level of noise: the larger the level of noise is, the

less sensitive the tests are.
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Fig. 5: Influence of different data generating conditions on the significance of the
three F-tests at the aggregated level

5.2 Comparison Between F-Global, F-Block
and F-Coefficient Tests

Analyzing the behavior of F-global, F-block and F-coefficient with respect to the
distribution of data, levels of variances of the endogenous disturbance terms, and
sample size, we want to verify whether the three F-tests are consistent.3 For each
comparison we calculate the error ratio as the proportion of discordances, (i.e.,
cases in which we obtain opposite p-values (for example the F-global is significant
whereas the F-block is not significant or vice-versa, or the F-block is significant
whereas the F-coefficient is not significant or vice-versa). In Fig. 6, we present the
distribution of the error ratio considering the different factors previously mentioned.
We observe that on average, we have a 5 % of error ratio discordance when com-
paring outcome of the F-global with F-block test, and 7 % comparing the F-block
with F-coefficient test. We can clearly see two trends: the error ratio decreases when
the sample size increases, the error ratio increases when the level of error variance
terms increases. The form of distribution have no impact on the error ratio (i.e., the
error ratio is almost constant).

3 When the F-coefficient test finds a significant difference between two path coefficients, should it
imply that the F-block test—comparing the two endogenous equations containing the significant
coefficient—also gives a significant p-value. Likewise the F-global test should give a significant
p-value comparing the PLS model that contains this endogenous equation.
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Fig. 6: Summary of the p-value distribution error ratio of the simulation study

6 Conclusions

We have extended the performance of the PATHMOX approach to detect which par-
ticular path coefficients of a structural model (F-coefficient test) and which endoge-
nous equation (F-Block test) are responsible for an observed difference between
two models detected by the F-Global test of PATHMOX. We have seen how the
F-test of model comparison of Lebart ([1, 6]) can be adapted for these purposes.
In the performed simulation we have seen that a concordance does not always not
always exists between these three aforementioned tests (F-coefficient, F-block, and
F-global). We have also seen, however, that for large samples the concordance is al-
most perfect. In addition, we have seen that the original distribution of the data does
not affect the sensitivity of the tests. However we have seen that sample size clearly
affects the results of the tests and, obviously, that the difference of path coefficients
in both segments clearly affects the significance of the tests.
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Integrating Organizational Capabilities
to Increase Customer Value: A Triple
Interaction Effect

Gabriel Cepeda, Silvia Martelo, Carmen Barroso, and Jaime Ortega

Abstract The aim of this paper is to contribute to the strategic management
literature by identifying empirically possible combinations of three organizational
capabilities and to analyze whether the possible interaction between them leads to
the creation of superior customer value. We aim to determine how the interaction be-
tween three capabilities (i.e., market orientation, knowledge management and cus-
tomer relationship management) is and the potential effects of this relationship for
increasing customer value. In order to test this question, we model a triple inter-
action effect following an orthogonalization approach using partial least squares
(PLS). We used data from Spanish banking industry. Surprisingly, the triple effect
explains more variance of customer value than the alternative operationalizations of
the three organizational capabilities linked to customer value creation.

Key words: Organizational capabilities, Customer value, Interaction effects,
Orthogonalization approach

1 Introduction

Given the increasing intensity of competition in business and the strong trend to-
wards globalization, attitudes towards the customer are very important; their role
has changed from that of a mere consumer to one of consumer, co-operator, co-
producer, co-creator of value and co-developer of knowledge and competencies [1].
Furthermore, the complex competitive environment in which firms operate has led
to the increase in customer demand for superior value [2]. Therefore, more and more
firms see customer value as a key factor when looking for new ways to achieve and
maintain a competitive advantage [3, 4].
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A firm’s organizational capabilities are of vital importance for increasing cus-
tomer value creation. Thus, a firm should focus on improving those capabilities that
view the customer as its key component, in order to maximize the value created
for them. We will emphasize the next three capabilities: ‘market orientation’ (MO),
‘knowledge management’ (KM) and ‘customer relationship management’ (CRM).
It is of interest that, although all these capabilities are developed by the compa-
nies and could therefore be considered to be internal in nature, a relationship with
the customer and the capabilities associated with market orientation require strong
external contact for them to be developed.

After reviewing the existing literature, it is clear that each of these three capabil-
ities is linked to customer value. The primary aim of market-oriented firms, firms
that manage their knowledge or those that manage customer relationships is to of-
fer superior customer value. However, there is no single or intermittent influence
that is important, but rather, the effect of the three capabilities has to be global and
sustainable (i.e., permanent). According to [5], merely possessing valuable and rare
resources and capabilities, does not guarantee the development of competitive ad-
vantage or the creation of value; firms must be able to manage them effectively. It
follows therefore that value can also be created by recombining existing resources
and capabilities [6]. It should be possible to reconfigure organizational capabilities
so that the firm can be continually creating value, and this is where dynamic capa-
bilities (DC) come into play.

We have not come across any other papers in the previous literature that deal with
this relationship between the three proposed organizational capabilities, or any that
consider its influence on customer value. We will address this gap in the literature
by stating that customer value will be increased if there is interaction between the
three proposed capabilities (MO, KM and CRM). The idea is to see how the three
proposed capabilities jointly influence customer value. We will also state that the
interaction between them can constitute a DC (viewed as a “black box”), which al-
lows a firm to maintain its competitive advantage. Specifically, our research question
is: If the customer demands superior value, how should a firm combine its existing
capabilities in order to offer this superior value?

In short, the aim of this paper is to contribute to the strategic management lit-
erature by identifying empirically possible combinations of the three proposed or-
ganizational capabilities and to analyze whether the possible interaction between
them leads to the creation of superior customer value. We aim to determine how the
interaction between the three capabilities (MO, KM and CRM) is and the potential
effects of this relationship for increasing customer value.

We therefore propose the model and hypothesis illustrated in Fig. 1.
Hypothesis 1: The interaction between MO, KM and CRM is positively related

to customer value creation.
In order to test this question, we model a triple interaction effect following an

orthogonalization approach [7, 8] using partial least squares (PLS). The interaction
term is composed of the three aforementioned capabilities (MO, KM and CRM)
impacting on customer value.
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2 Methodology

2.1 Data Collection

The research hypotheses were tested within the Spanish banking industry, including
retail and commercial banks and savings banks serving the general public, repre-
senting around 18 % of the national GDP.

We have chosen this industry because we consider banks to be the type of busi-
ness that simultaneously demonstrates the four organizational capabilities proposed
in our model (MO, KM, CRM and customer value creation). Banking is a very
knowledge-intensive industry and therefore an appropriate one in which to iden-
tify, analyze and evaluate these capabilities. The increasingly intense competition
within the financial service industry means that banks need to recognize the need
to look for new ways of creating customer value. Alongside the competitiveness of
the industry, the relative intangibility of their products/services creates the need to
capture and retain customers by offering them something extra, through MO, KM
and CRM. These aspects indicate that this industry is best suited to our study.

It is important to point out the significant crisis in the financial services industry,
both currently and at the time we carried out the study. The crisis has forced many
countries to apply severe measures to reduce the impact on their financial services
industry. Numerous banks and insurance companies have been taken over or cap-
italized, company mergers as a rescue measure have multiplied and crashes have
increased. The full extent of the crisis is still unknown, since events have occurred
at an unusually high speed, leading to enormous changes within a short time, mainly
subsequent to the collapse of Lehman Brothers in September 2008.

At the time of the study there was a total of 85 banks operating in Spain; of which
40 were commercial/retail banks and 45 were savings banks.

The low number of entities that comprise the banking industry in Spain can be
viewed either as an advantage or a disadvantage. On the one hand, it allows us to
look at the whole population rather than a particular sample of it. But, on the other

Fig. 1: The conceptual model
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hand, we are forced to work with a small sample size that can lead to problems in
the analysis of data, as we will see later.

The response rate to the questionnaire was high, at around 90 %, with 76 of the
85 bodies responding. It is important to note that all of the completed questionnaires
were valid.

We also gathered data from customers in order to gain a more precise picture
of the value generated through the three capabilities (i.e. MO, KM, and CRM). A
pool of customer data (with a minimum of 30 customers) was obtained for each of
the 76 banks to observe standard customer behavior regarding perceived value. We
decided to integrate these two sets of data (bank and customer) to test the hypotheses
in our theoretical model.

Furthermore, because the data sample (76) is very close to the real population
in Spanish banking industry (85), we used the factor correction suggested by [9] to
adapt the standard error generated.

2.2 Measures

We would point out that all the constructs included in the questionnaires have been
measured against existing scales in the literature and we have therefore used instru-
ments whose validity and reliability has already been proven in other research.

To measure MO we used the Narver and Slater [10] 15-item scale (the so-called
MKTOR scale), consisting of three dimensions: customer orientation (CO), com-
petitor orientation (COO) and interfunctional coordination (IC). We believe the MK-
TOR scale is appropriate for our study, with its emphasis on customer orientation,
since the customer is the main object of our study. We also believe that it is appropri-
ate to use the MKTOR scale because our study should have a strategic perspective
and we believe that the cultural focus of this scale is better suited to our study than
the behavioral focus of Jaworski and Kohli’s [11] MARKOR scale. After cleaning
the data, only 11 items were used.

We have created our own scale to measure KM, taking items from various scales
used in previous investigations. From our literature review, we identified four key di-
mensions that affect KM processes: knowledge creation, knowledge transfer, knowl-
edge application and knowledge storage/retrieval. To measure knowledge creation,
we have chosen an absorptive capacity (AC) scale proposed by [12], as we be-
lieve this would add to the conceptual richness of our study. We have used Gold
et al.’s [13] scales to measure knowledge transfer (KT) and knowledge applica-
tion (KA) and, to measure knowledge storage/retrieval, we have chosen the scale
to measure organizational memory (OM) proposed by [14]. Organizational memory
refers to the processing of saved knowledge, and this concept resembles our idea of
knowledge storage and retrieval. The final cleaned scale consists of 9 items for the
creation dimension, 10 items for the transfer dimension, 10 items for the application
dimension and 4 items for the storage/retrieval dimension.



Integrating Organizational Capabilities to Increase Customer Value 287

To measure CRM, we have used Reinartz et al.’s [15] scale, which measures the
initiation (IN), and maintenance and termination (MT) phase of the CRM processes.
We consider this to be a very intuitive scale and easy to understand in practice.
Due to the high number of items (the original scale consists of 39 items), we have
selected items closest to the concepts, ideas and objectives of our study and have
created a CRM scale consisting of 12 items (7, and 5 items, respectively). A group
of experts, using a Delphi method, judged whether those 12 items were the most
appropriate for the objectives of the study and the final, cleaned scale consists of
7 items.

In the case of the customer value creation capability, and after a review of the
scales developed in previous investigations, we opted for the scale proposed by [16].
The lack of measurement proposals for the creation of customer value makes it more
difficult to select the most appropriate instrument for this construct. We have used
Hooley et al.’s [16] scale because we consider that it is complete and refers to the
creation of value for customers, as opposed to other proposals, which analyze value
creation for all the stakeholders.

We then created the double interaction terms and the triple interaction term using
Little et al.’s [8] orthogonalization approach based on Lance’s [17] residual center-
ing regression approach. The approach involves a three-step procedure in which the
double interaction terms are first regressed on their own components via ordinary
least squares and then residuals of this regression are used instead of the respective
double interaction terms in tests of the structural model. The triple interaction term
is then also regressed on its three components and the double interaction compo-
nents via ordinary least squares and the residuals of this regression are also used
instead of the respective triple interaction term in tests of the structural model. Fol-
lowing the suggestion by [7] derived from Monte Carlo simulations, we chose the
orthogonalization approach over alternatives such as a product indicator, because
the former delivers the most accurate point estimates for interaction effects. More-
over, it has a high prediction accuracy, which is of focal interest for studies using
structural equation path models mainly for predication purposes, such as customer
value indexes (e.g. [18]).

2.3 Results

We simultaneously tested our model an its hypothesis using partial least squares
(PLS); a structural equation modeling technique which uses a principal component-
based estimation approach [19]. PLS was chosen because of the characteristics of
our model and sample. The model uses formative indicators, the sample size is rel-
atively small (76 cases), and the data are non-normal. It is not possible to run these
models using other techniques of structural equation models (e.g. the covariance-
based model performed by LISREL or AMOS) (see for example, [20]). For hy-
pothesis testing, we used the bootstrapping procedure recommended by [19] with
500 resamples, using 76 cases each. We tested the hypotheses using SmartPLS
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(Version 2.3, [21]). The structural model contains the three capabilities (MO, KM,
and CRM), and customer value creation.

The means, standard deviations, internal consistency and reliability estimates,
and the paired correlation coefficients of all constructs appear in Table 1. The scale
reliability of all reflective measures is satisfactory, with composite reliability (CR)
ranging from 0.82 to 0.88.

Table 1: Descriptive statistics and discriminant validity

Mean SD AVE CR 1 2 3 4

1. Market orientation 5.52 0.94 0.65 0.88 0.81
2. Knowledge management 5.33 0.88 0.80 0.88 0.80 0.89
3. Customer relationship managementa 5.48 1.33 n.a n.a 0.51 0.46 n.a
4. Customer value creation 5.25 1.21 0.63 0.82 0.29 0.42 0.23 0.79

n.a not applicable because they are formative measures, Mean the average score for all of the
items included in this measure, SD Standard deviation, AVE average variance extracted; the bold
numbers on the diagonal are the square root of the average variance extracted, shared variances
are given in the lower triangle of the matrix, CR composite reliability
aFormative scales

In all the measurements, Bagozzi and Yi’s [22] composite reliability index and
Fornell and Larcker’s [23] average variance extracted index are higher than the eval-
uation criteria of 0.7 for composite reliability and 0.5 for the average variance ex-
tracted.

Discriminant validity was determined by calculating the shared variance between
pairs of constructs (i.e. the lower triangle of the matrix in Table 1) and verifying that
it was lower than the average variances extracted for the individual construct (i.e.
the diagonals in Table 1). The shared variances between pairs of all possible scale
combinations indicated that the variances extracted were higher than the associated
shared variances in all cases [23]. The shared variances, means and standard devia-
tions are shown in Table 1.

We also sought formative dimensions by examining the weights [24], which pro-
vide information on the contribution of each indicator to its respective construct.
Weights do not need to exceed any particular benchmark because a census of in-
dicators is required for a formative specification [20]. The concern with regard to
formative dimensions is the potential multicolinearity with overlapping dimensions,
which might produce unstable estimates [24]. Results of a colinearity test show that
the variance inflation factor (VIF) scores of each second-order construct for all di-
mensions are far below the commonly accepted cut-off of 3 (<1.92).

Finally, common method bias might influence some of the relationships formu-
lated in our model. To rule out the existence of such a bias, we used methods sug-
gested by [25], who recommend procedural remedies when including formative con-
structs. We therefore applied these to protect respondent anonymity and reduce eval-
uation apprehension by assuring subjects that there were no right or wrong answers;
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to improve the scale items with a pre-test to a set of experts; and to counterbalance
question order.

2.4 Hypothesis Testing

Once the psychometric properties of the measures had been checked, the next step
was to evaluate the hypothesized relationship developed from our consideration of
the relevant literature (see Fig. 1), discussed in the text as H1.

We provide three models to test Hypothesis 1: (1) the direct model, which in-
cludes the main effects of the three capabilities (MO, KM, and CRM) on customer
value creation; (2) the second model shows the effect on customer value creation
of the interaction between each of the three organizational capabilities (MO×KM;
MO×CRM; KM×CRM); and (3) the theoretical model, which includes the inter-
action of the three organizational capabilities (MO×KM×CRM). The PLS results
for the three models, are shown in Table 2.

Table 2: Summary of results from partial least squares analysesa

Direct model Second model Theoretical
model

Path from To Path coefficient Path coefficient Path coefficient
(t)b (t)b (t)b

MO Customer value creation −0.17∗(−2.54) −0.16∗(−2.30) −0.16∗(−2.53)
KM Customer value creation 0.52∗∗(9.33) 0.51∗∗(7.95) 0.51∗∗(8.94)
CRM Customer value creation 0.08∗(2.05) 0.07(1.56) 0.08(1.63)
MO×KM Customer value creation 0.07(1.58) 0.07(1.37)
KM×CRM Customer value creation 0.00(0.04) 0.00(0.02)
MO×CRM Customer value creation −0.05(−0.80) −0.06(−0.85)
MO×KM×CRM Customer value creation 0.28∗∗(7.77)
R2, Customer
value creation

0.19 0.19 0.27

F for increment in
R2

0.00 7.41∗∗∗

∗p < 0.05; ∗∗p < 0.001; ∗∗∗p < 0.01
aValues of t were calculated through bootstrapping with 500 resamples with 76 cases per sample
bt values were adapted by correction factor because of the sample was very close to the entire
population of the banking industry

According to Table 2, we find a significant link between the triple interaction
construct (MO×KM×CRM) and “value creation” (β = 0.28, p < 0.001), which
supports hypothesis 1, but the path between the three double interaction terms is not
significant, as shown in Table 2. This provides more arguments to support the impact
of the triple interaction on customer value creation, using empirical arguments to
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prove that the triple interaction is the best way for these organizational capabilities
to create value for customers.

With regard to variance explanation, we find that the theoretical model that con-
tains the triple interaction term explains 27 % of value creation. Both the direct
model (which only includes the direct link between the three individual organiza-
tional capabilities and value creation) and the second model (which includes the
three organizational capabilities, the three double interaction terms and value cre-
ation) explain 19 % of the variance of value creation. We therefore conclude that
the 8 % difference in the variance explanation can be attributed to the simultane-
ous interaction of the three capabilities. We also estimated the ratio F2 suggested
by [19], to provide the level of significance of the improvement. When F2 is greater
than 0.02, the improvement is significant. In our case F2 was 0.11.

3 Conclusion and Implication for Researchers

In recent years, customers have become the focus of attention, and every firm seeks
to satisfy them in one way or another. Some firms are market-oriented to create
superior customer value through the culture and behaviors that this orientation pro-
motes. Other firms prefer to manage their knowledge, while others focus on creating
and maintaining long-term relationships with their customers.

Understanding what it is that customers value in an offer, creating value for them
and then managing it over time, have long been recognized as essential elements
of a firm’s business strategy. Customer value emerged in the 1990s as an area of
increasing interest for firms, both at an academic and a professional level. On the
one hand, service marketing literature focuses on the demand perspective of value;
customer value and its perception. On the other hand, service management literature
considers that the distinctive competence is value creation and the firm’s capabilities
for it.

Organizational capabilities are considered to be highly valuable attributes in a
firm. Firms therefore want to be perceived as entities that can demonstrate a set
of outstanding capabilities [26]. Very often, firms invest heavily in resources and
capabilities, but not enough in the capabilities required to select, develop and de-
ploy them efficiently [27]. According to these authors, firms ignore the develop-
ment of the DC required to make these investments successful. When a firm pos-
sesses VRIN resources but does not use any DC, it cannot maintain its superior
performance [28]. Firms’ competitive advantages in the current environment are not
derived simply from the distinctive resources and capabilities they possess but also
from the way they are used [29, 30].

We argue that the three proposed capabilities form a distinctive competence for
firms and when they are combined a series of changes take place, which transform
this distinctive competence into a DC for the firm. The high speed of change in
the environment and the increasing strength of the competition make it all the more
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important for a firm’s combinations of resources and capabilities to be difficult to
imitate.

One of the main limitations of our study is that the investigation was carried out
at a single point in time, which is a particular limitation because customer value
is a dynamic construct. Our study was carried out in a single industry (the Spanish
banking industry), which does not allow us to generalize the results attained to other
economic industries. Furthermore, our model focuses on the three capabilities that
we consider to be the most important for customer value creation. We have chosen
these capabilities (MO, KM and CRM) because they are the organizational capabil-
ities mentioned most often in the existing literature as having the greatest influence
on customer value [1, 31, 32]. We would point out that it is of course possible to
include other capabilities in our model. The explanatory power is therefore limited
to the variables we have considered.

Finally, it is important to stress the situation that the industry was in at the time
of the study. Although we believe that this situation provided an ideal opportunity
for our study, it also created problems when collecting data for the empirical inves-
tigation. Because of the high degree of turbulence in the industry at the time and the
fact that the industry and its problems and uncertainties were the subject of much
discussion, some managers were wary of giving out data.

We consider that this investigation provides a starting point for future investiga-
tions relating to customer value creation or maintenance in the current environment,
where the customer is daily more demanding and the competition is stronger. Pos-
sible future investigations might be an extension of the timescale of our study and
an expansion into other economic industries, in order to be able to generalize the
results; and an extension of the model to introduce, for example, other capabilities
that a firm possesses that might influence customer value creation.
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Satisfaction with ERP Systems in Supply
Chain Operations

Michael J. Murray, Wynne W. Chin, and Elizabeth Anderson-Fletcher

Abstract A key reason for implementing an enterprise resource planning (ERP)
system is the ability it provides an organization to synchronize and automate the
flows of material, information and cash through the supply chain. Viewed from this
perspective ERP systems can be seen as an enabling technology to achieve better
supply chain integration, which should result in better decision making and im-
proved financial performance. Yet much of the debate regarding the value of ERP
systems focuses on their implementation costs and the corresponding difficulty mea-
suring the benefits generated by these projects. The significant level of total global
spending on ERP systems—estimated currently at $253.7 billion—provides the mo-
tivation behind this study. We seek to understand how effective these systems are
in providing the information needed by decision makers in production and opera-
tions management roles. This is a necessary step in determining what benefits can
be achieved by these systems. To do this we developed surveys through a compi-
lation of several pilot interviews with plant managers and production supervisors
in various industries. For both of these management roles, functional areas under
their responsibility were identified and questions were formulated to assess: (1) the
usefulness of various functionalities of the ERP system within the manager’s func-
tional area and the manager’s opinion of the effectiveness of the ERP system in
that area, and (2) the manager’s opinion of ERP performance in a functional area
and his/her overall satisfaction with the ERP system. We used Partial Least Squares
(PLS) methodology to analyze the responses from the survey. The results indicate
that the majority of plant managers use ERP systems in manufacturing, cost control,
inventory & logistics activities and in reporting, as if they were still using MRPII
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(Manufacturing Resource Planning) systems. They do not seem to be making use
of the additional capabilities that ERP systems have over and above those found
in MRP II systems. Production supervisors appear to be using ERP systems more
evenly across their areas of responsibility. For production supervisors, as in the case
of plant managers, reporting is the area where ERP performance has the highest
impact on overall satisfaction of the user with the ERP system. Finally, the results
indicate that there are several avenues for improvement in the way the current ERP
systems support daily operations of these professionals, most notably in the area of
analytics and providing better business intelligence.

Key words: Enterprise systems, Supply chain management, Data analytics, Busi-
ness intelligence, Empirical research methods

1 Introduction

Until recently most research involving enterprise resource planning (ERP) systems
has focused on perceived overall firm-level performance improvement or imple-
mentation issues like cost, time, and success [1, 3, 8, 10, 13]. However from a
supply chain perspective a more interesting question is how can the adoption of the
ERP system actually improve supply chain performance? It has been shown that
organizations that had high levels of information system usage generally tended to
have better manufacturing performance [15]. While functional fit and user accep-
tance are important in achieving near term benefits, in the long term operational
benefits depend more on process integration, optimization, improved access to
information and business process improvement [12]. For example, a study of Tai-
wanese IT firms showed that three benefits provided by ERP systems in particular
(operational process integration, customer and relationship management, and man-
ufacturing planning and control integration) enhanced supply chain performance in
that industry [14].

In principle, investments in ERP and other enterprise systems provide an or-
ganization the ability to synchronize and automate the flow of material, business
processes, information and cash throughout the supply chain which should result in
better decision making, improved financial performance, and higher stockholder re-
turns. While there is some research supporting this contention [7, 11], other studies
have yielded mixed results [6] and it is not clear what factors affect these results.
This uncertainty, coupled with the significant level of investment in ERP and man-
ufacturing intelligence systems over the past decade (currently estimated at over
$250 billion annually [5]) provides the motivation behind this study. We seek to
understand how effective these systems are in providing the information needed by
decision makers in supply chain operations roles to make better decisions. This is
a necessary step in determining whether the investment in an ERP system can im-
prove supply chain and firm performance. By focusing on the managers responsible
for the daily production operations of the enterprise we seek to understand how well
the technology solves the problems faced by these managers and offer insight into
ways the technology can be improved.
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Our study differs from previous studies in several important ways. First, we
specifically targeted our survey to supply chain operations. Second, we focused on
those aspects of the systems that comprise the manufacturing intelligence capabili-
ties that operations managers need, such as the ability to monitor inventories, report
on labor costs, etc. Finally, we introduce a facet based approach using both forma-
tive and reflective indicators in a Partial Least Squares (PLS) analysis to determine
which factors influenced satisfaction within the supply chain operations group.

2 Research Methodology

To develop the research instrument we first conducted interviews with several plant
managers and production supervisors at 15 large companies (defined as having an-
nual sales greater than $200 million) in the Chemicals, Aerospace & Defense, Indus-
trial Machinery & Construction, High Tech, Life Sciences and Consumer Products
industries. The companies were selected based on size, industry, and their willing-
ness to participate. The purpose of the interviews was to identify (a) principal ar-
eas of responsibility, (b) the major tasks in each area of responsibility, and (c) the
information requirements necessary to perform these tasks. Our interviews estab-
lished that the primary responsibilities for production supervisors are in the areas of
manufacturing, inventory management, labor and personnel, and cost control, while
plant managers had responsibilities in health, safety and environmental, and facility
maintenance in addition to the four areas listed above. Under our definitions most
production supervisors would have a reporting relationship to the plant manager. So
while the production supervisors are responsible for complying with safety, health
and environmental performance, and facilities and maintenance procedures, they do
not have financial management responsibility for these areas.

Next, we developed a facet based model for explaining overall satisfaction with
ERP system performance (see Fig. 1). We propose that overall satisfaction with the
ERP system performance in supply chain operations is dependent upon satisfaction
with how the system supports the needs of the operations manager in each functional
area, or facet, of responsibility. This in turn is predicated on how effectively the sys-
tem provides the information needed for decision making in those functional areas.
Thus, our model consists of emergent constructs using formative measures to assess
the relative impact and effectiveness of the ERP system in performing the various
tasks in each area of responsibility, latent constructs with measures that reflect the
satisfaction with ERP system performance for that particular area of responsibil-
ity, and a global latent construct with reflective measures for satisfaction with the
overall ERP system performance.

Based on this model we developed a set of questions for the survey instru-
ment. The surveys have an introductory section asking about company demograph-
ics followed by sections corresponding to the areas of responsibility determined for
the management role. Each section consists of questions on a 7-point Likert scale
(1= strong disagree, 4= neutral, 7= strongly agree) about the effectiveness of ERP
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Fig. 1: The proposed satisfaction model

system in performing various tasks within a particular area (facet) of responsibility.
Also included in each section was a question asking to what extent the managers
used the following tools in performing their tasks in each of their areas of respon-
sibility: ERP Systems, Spreadsheets, Advanced Planning Systems, Manufacturing
Execution Systems, Phone, Paper, and Other. Respondents could check multiple op-
tions in answering this question. The final section in each survey was a “General”
one including a set of questions repeating the inquiry into the satisfaction of the
user with ERP system performance in user’s various areas of responsibility, and two
questions asking the user’s overall satisfaction with the ERP system (the surveys are
provided in Appendices “Plant Manager Survey Questions” and “Production Super-
visor Survey Questions”). These questions were reviewed by a cross-section of the
managers and supervisors we initially interviewed who provided feedback on the
content and clarity.

In our research design, each question is an indicator that is linked to a particular
construct or factor. For example, in the plant manager survey the question, “The
current information system supports me very well in the management of my plant,”



Satisfaction with ERP Systems 299

is a direct indicator of the plant manager’s overall satisfaction with the ERP system.
This is often termed as a “reflective” indicator of the satisfaction construct, because
we would expect that an increase or decrease in the actual level of satisfaction would
result directly in an increase or decrease in the response to this measure as reported
by the plant manager.

An indicator can also be “formative.” A change is this indicator implies a certain
level of impact on the overall construct, but the converse where if we see a change
in the construct does not imply a change in that particular indicator. Referring again
to the plant manager survey question, “Our current information system is an effec-
tive tool to track deviations from on-time delivery targets,” is one of many reasons
that may influence the plant manager’s perceived effectiveness of the ERP system
in managing the manufacturing area. But a change in the level of the manageress
satisfaction may be due to other factors/reasons and we cannot necessarily infer that
a change occurred for that particular reason. In other words, a drop in the manager’s
overall satisfaction with the ERP system in the manufacturing area need not imply
any change in the manager’s perception of how well the system allows her to track
on-time deliveries.

A business services provider was engaged to send email invitations to participate
in the survey to a large number of individuals at companies with sales greater than
$200 million in the target industries. The service provider did not provide individual
names or identifying information, and only guaranteed that the email addresses on
their list represented individuals in manufacturing roles. Realizing that many of the
recipients on that list would not hold positions as plant managers or production su-
pervisors, the decision was made to send a second email to members of APICS (The
Association for Operations Management). APICS members were chosen based on
the belief that they would have proportionally more members in the targeted roles.
Unfortunately, many of the addresses on the APICS list were obsolete or otherwise
unusable (we were able to control for company size and industry using the company
demographic information in the survey). Because it was not possible to identify how
many (if any) email recipients were on both lists, we were unable to determine ex-
actly how many unique survey invitations were sent, nor can we identify how many
reached their intended target audience of plant managers and production supervi-
sors. Data was collected for a relatively short period of 4 weeks, which resulted in a
convenience sample of 156 usable responses (75 responses for Plant Managers and
81 for Production Supervisors). The number of responses for both roles was ade-
quate to analyze the models that we have developed based on the initial interviews.

3 Results

Partial Least Squares (PLS) methodology was used to analyze the survey data. PLS
makes no assumptions about multivariate normality in the data, can be used for
theory confirmation as well as for suggesting where relationships may (or may not)
exist and it avoids problems that often occur in covariance-based SEM analyses,
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such as inadmissible solutions and factor indeterminacy [2, 4]. Finally, we chose
PLS for its ability to estimate formative measures directed (i.e., our F-constructs)
since these measures would result in identification constraints that hampers the use
a covariance-based approach such as LISREL [9]. The path coefficients obtained
from a PLS analysis are standardized regression coefficients, while the loadings
of items on individual constructs are factor loadings. Factor scores created using
these loadings are equivalent to weighted composite indices. Thus, PLS results can
be easily interpreted by considering them in the context of regression and factor
analysis. As such, it allows us to assess how well the set of items used to measure
one of our latent constructs, O-production, for example, actually served to predict
the overall satisfaction with the ERP.

3.1 Survey Responses

Descriptive statistics for all indicators in both models is presented in Table 1. What
is most striking about the survey responses from both plant managers and produc-
tion supervisors is their overall neutral attitude about how well the enterprise system
supports them in the various facets of their job responsibilities. With the exception of
inventory management their attitudes clustered around either the “slightly disagree”
or “slightly agree” side of neutral for all facets, while they tended to “slightly agree”
that enterprise systems supported the inventory management facet of their respon-
sibility. This neutrality may indicate that managers in supply chain operations rely
on only a few features and functions of their enterprise systems to perform their job
responsibilities.

3.2 Construct Validity and Reliability

Convergent validity of the scales was established by performing a bootstrap anal-
ysis on the raw data. The t-values for the path loadings of the outer model for all
indicators were greater than 1.96 for both models (see Tables 2 and 3). Discrimi-
nant validity was demonstrated in two ways: (1) by examining crossloadings for the
observed constructs (O-constructs) for both models (Table 4), and (2) by examining
the ratio of the square root of the average variance extracted for each O-construct to
the correlations of that construct to all the other constructs for both models (Table 5).

3.3 Plant Manager Model Results

The proportion of the variation explained (r2) in overall satisfaction with the ERP
System by the hypothesized PLS model is 80.8%. This is an excellent r2 value
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Table 1: Descriptive statistics

Plant manager model

Construct Number of items Average Std dev
Formative

Manufacturing 9 4.93 0.53
Inventory 7 5.16 0.63
Health, safety & environ. 4 3.48 0.14
Cost controls 10 4.77 0.62
Facilities maintenance 4 3.57 0.10
Labor & personnel 6 3.97 0.35
Reporting 5 4.40 0.88

Observed
Manufacturing 2 4.74 0.27
Inventory 2 5.11 0.25
Health, safety & environ. 2 3.44 0.18
Cost controls 2 4.47 0.47
Facilities maintenance 2 3.54 0.09
Labor & personnel 2 3.88 0.04
Reporting 4 4.91 0.53
Overall 3 4.33 0.29

Production supervisor model

Construct Number of items Average Std dev
Formative

Manufacturing 20 4.41 0.48
Inventory Mgt 5 5.29 0.55
Labor & personnel 6 3.78 0.24
Cost control 8 4.09 0.47
Reporting 4 4.50 0.43

Observed
Manufacturing 2 4.65 0.48
Inventory Mgt 2 5.04 0.40
Labor & personnel 2 3.79 0.22
Cost control 2 4.16 0.08
Reporting 2 4.40 0.04
Overall satisfaction 2 4.42 0.40

indicating that the model is a good predictor of overall satisfaction with the enter-
prise system. As would be expected, plant managers’ satisfaction with the various
facets of the system (i.e., manufacturing, inventory management, etc.) is strongly
dependent on the how well those facets satisfy their needs. In each instance the path
loadings indicate a strong, statistically significant relationship, with p < 0.005 in all
cases (see Fig. 2).

What is more interesting, however, is how the level of satisfaction with each facet
translates into overall satisfaction with the enterprise system. These results indicate
that three of the facets hypothesized to affect overall satisfaction are statistically sig-
nificant: satisfaction with manufacturing performance (p < 0.05), satisfaction with
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Table 2: Indicator loadings: plant manager model

Outer model Loading Mean Std error T-stat Outer model Loading Mean Std error T-stat

Formative indicators Reflective indicators
F-Manufacturing O-Manufacturing

MF01 0.8068 0.7739 0.0765 10.5461 MS01 0.8923 0.8915 0.0391 22.8486
MF02 0.5627 0.5283 0.1332 4.2243 MS02 0.9171 0.9194 0.0208 44.0380
MF03 0.7913 0.7627 0.0715 11.0616 O-InvMgt
MF04 0.6742 0.6428 0.1041 6.4734 IS01 0.9382 0.9381 0.0137 68.5565
MF05 0.8232 0.8009 0.0583 14.1247 IS02 0.9341 0.9353 0.0165 56.5475
MF06 0.6885 0.6584 0.1036 6.6448 O-Safety
MF07 0.6546 0.6207 0.1069 6.1222 SS01 0.9486 0.9480 0.0123 77.1310
MF08 0.7872 0.7221 0.0788 9.9864 SS02 0.9398 0.9392 0.0201 46.7677
MF09 0.8683 0.8469 0.0669 12.9879 O-CostControl

F-InvMgt CS01 0.8542 0.8493 0.0363 23.5477
IF01 0.8021 0.7771 0.0658 12.1828 CS02 0.8759 0.8656 0.0330 26.5083
IF02 0.6855 0.6382 0.1096 6.2547 O-Facilities
IF03 0.8436 0.8291 0.0603 13.9965 FS01 0.9498 0.9515 0.0159 59.5975
IF04 0.8237 0.8067 0.0569 14.4686 FS02 0.9442 0.9457 0.0198 47.6697
IF05 0.8489 0.8290 0.0469 18.0856 O-Labor
IF06 0.8530 0.8312 0.0354 24.1035 LS01 0.9319 0.9323 0.0137 68.1279
IF07 0.7752 0.7553 0.0736 10.5261 LS02 0.9220 0.9194 0.0235 39.1542

F-Safety O-Reporting
SF01 0.8657 0.8615 0.0483 17.9370 RS01 0.8920 0.8896 0.0240 37.2188
SF02 0.9290 0.9263 0.0281 33.0029 RS02 0.8810 0.8770 0.0272 32.3654
SF03 0.9298 0.9220 0.0274 33.8775 Overall Satisfaction
SF04 0.9936 0.9890 0.0079 126.5068 OS01 0.9300 0.9308 0.0136 68.2170

F-CostControl OS02 0.9061 0.9076 0.0296 30.6142
CF01 0.6390 0.5982 0.1227 5.2089 OS03 0.9559 0.9543 0.0117 81.5962
CF02 0.8355 0.8132 0.0484 17.2585
CF03 0.7186 0.7129 0.0774 9.2896
CF04 0.8270 0.8025 0.0609 13.5740
CF05 0.6820 0.6605 0.0848 8.0382
CF06 0.6778 0.6290 0.0722 9.3902
CF07 0.6045 0.5759 0.0963 6.2750
CF08 0.6379 0.6093 0.0905 7.0494
CF09 0.4574 0.4185 0.1275 3.5885
CF10 0.6495 0.6159 0.0813 7.9897

F-Facilities
FF01 0.9694 0.9663 0.0136 71.5074
FF02 0.9645 0.9619 0.0214 45.0801
FF03 0.8355 0.8164 0.0634 13.1758
FF04 0.8981 0.8916 0.0445 20.1732

F-Labor
LF01 0.8721 0.8558 0.0413 21.0945
LF02 0.8869 0.8700 0.0449 19.7516
LF03 0.8484 0.8368 0.0571 14.8451
LF04 0.7519 0.7533 0.0605 12.4186
LF05 0.8582 0.8555 0.0473 18.1508
LF06 0.9365 0.9272 0.0282 33.2112

F-Reporting
RF01 0.7127 0.6943 0.1073 6.6430
RF02 0.7781 0.7525 0.0894 8.7051
RF03 0.8422 0.8328 0.0773 10.8980
RF04 0.7709 0.7520 0.0879 8.7656
RF05 0.8818 0.8486 0.0763 11.5626
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Table 3: Indicator loadings: production supervisor model

Outer model Loadings Mean Std error T-stat Outer model Loadings Mean Std error T-stat

Formative indicators Reflective indicators
F-Manufacturing O-Manufacturing
MF01 0.7080 0.6919 0.0799 8.8567 MS01 0.8909 0.8890 0.0327 27.2629
MF02 0.7660 0.7478 0.0741 10.3444 MS02 0.9221 0.9237 0.0121 76.1992
MF03 0.7070 0.6958 0.0717 9.8601 O-InvMgt
MF04 0.7272 0.7128 0.0566 12.8449 IS01 0.9152 0.9110 0.0265 34.4831
MF05 0.7174 0.7002 0.0705 10.1702 IS02 0.9239 0.9242 0.0162 56.9274
MF06 0.8051 0.7918 0.0556 14.4712 O-Labor
MF07 0.7757 0.7617 0.0540 14.3545 LS01 0.9100 0.9119 0.0198 45.9022
MF08 0.7142 0.7002 0.0571 12.5091 LS02 0.9012 0.9031 0.0248 36.3844
MF09 0.6716 0.6611 0.0649 10.3553 O-CostControl
MF10 0.7078 0.6899 0.0675 10.4895 CS01 0.9616 0.9623 0.0115 83.5728
MF11 0.6778 0.6757 0.0634 10.6872 CS02 0.9661 0.9664 0.0095 101.7249
MF12 0.5795 0.5713 0.0858 6.7567 O-Reporting
MF13 0.7529 0.7358 0.0657 11.4631 RS01 0.9188 0.9195 0.0176 52.2958
MF14 0.7220 0.7051 0.0680 10.6200 RS02 0.9058 0.9077 0.0210 43.1530
MF15 0.7255 0.7124 0.0559 12.9835 Overall Satisfaction
MF16 0.8029 0.7846 0.0495 16.2060 OS01 0.9531 0.9530 0.0126 75.4704
MF17 0.8106 0.7934 0.0445 18.1986 OS02 0.9579 0.9584 0.0091 105.3975
MF18 0.7489 0.7332 0.0573 13.0694
MF19 0.7940 0.7794 0.0683 11.6331
MF20 0.8590 0.8404 0.0418 20.5659
F-InvMgt
IF01 0.6916 0.6785 0.0837 8.2655
IF02 0.7627 0.7396 0.0904 8.4380
IF03 0.8118 0.8016 0.0622 13.0450
IF04 0.8529 0.8394 0.0597 14.2794
IF05 0.9169 0.9049 0.0325 28.2104
F-Labor
LF01 0.8837 0.8820 0.0399 22.1717
LF02 0.8170 0.8188 0.0747 10.9441
LF03 0.8947 0.8932 0.0374 23.9037
LF04 0.8438 0.8423 0.0480 17.5952
LF05 0.9319 0.9268 0.0257 36.2129
LF06 0.9244 0.9206 0.0270 34.2973
F-CostControl
CF01 0.7737 0.7673 0.0593 13.0537
CF02 0.7621 0.7563 0.0691 11.0362
CF03 0.8926 0.8860 0.0460 19.4119
CF04 0.8356 0.8300 0.0527 15.8534
CF05 0.9003 0.8933 0.0344 26.1621
CF06 0.8197 0.8126 0.0607 13.5089
CF07 0.8185 0.8133 0.0530 15.4459
CF08 0.9276 0.9213 0.0354 26.1868
F-Reporting
RF01 0.8905 0.8838 0.0422 21.1006
RF02 0.8985 0.8912 0.0446 20.1418
RF03 0.9125 0.9040 0.0379 24.0489
RF04 0.8603 0.8435 0.0533 16.1381

inventory management (p < 0.05) and reporting satisfaction (p < 0.005). Of the
three, satisfaction with the reporting features of the enterprise system has the great-
est effect on satisfaction.
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Fig. 2: Plant manager model results

3.4 Production Supervisor Model Results

The proportion of the variation explained in overall satisfaction with the ERP Sys-
tem by the hypothesized model is 87.1%. Similar to the plant manager model this is
an excellent r2 value and indicates that the model is a good predictor of overall satis-
faction with the enterprise system. Like the plant managers, production supervisors
satisfaction with the various facets of the enterprise system also depends on the how
well those facets satisfy their needs. In each instance the path loadings indicate a
strong statistically significant relationship, with p < 0.005 in all cases (Fig. 3).

However the results indicate that satisfaction with only two of the facets hypothe-
sized to affect overall satisfaction are statistically significant: satisfaction with labor



Satisfaction with ERP Systems 307

(p < 0.01) and satisfaction with reporting (p < 0.005). As with the plant manager
model, satisfaction with the reporting features has the strongest impact on satisfac-
tion with the enterprise system.

4 Discussion

Our findings show how plant managers and production supervisors view satisfaction
with enterprise systems through the lens of their individual facets of responsibility.
Yet while these systems encompass a variety of facets, neither plant managers nor
production supervisors are making use of the additional capabilities that ERP sys-
tems have over and above those found in legacy systems such as manufacturing
resource planning (MRP II) systems. Furthermore overall satisfaction with the sys-
tem is linked to a few key indicators, most importantly satisfaction with the report
generating/reporting features of the system.

Because reporting plays such a prominent role in assessing satisfaction with en-
terprise systems, we feel it warrants a closer look. Table 6 summarizes the answers
to the question, “To what extent do you use the following tools in performing your
tasks in [this areas of responsibility]?” Examining these results shows that the most
common tool for reporting and analysis for plant managers in virtually all areas
of functional responsibility are spreadsheets, followed by reports generated by the
enterprise system. In some instances the difference in usage is quite large; for exam-
ple, plant managers indicated that spreadsheets are used predominantly for health,
safety and environmental reporting and analysis (71.6%) versus enterprise systems
(10.8%). For production supervisors usage is more evenly divided between spread-
sheets and enterprise system reports, although there are some notable differences
such as in inventory reporting and analysis which relies principally on enterprise
systems (73.8%) as opposed to spreadsheets (52.4%).

The high utilization of spreadsheet analysis versus enterprise system reports in
most functional areas seems to indicate that the enterprise system does not fulfill
the reporting and analysis needs in those facets. This could be the result of several
factors: difficulty in extracting data from the enterprise system, lack of flexibility in
enterprise system reports, timeliness in generating reports, and greater familiarity
with spreadsheet tools in general. This highlights the need to provide better oper-
ating analytics (i.e., business intelligence) to managers and supervisors in supply
chain operations.

5 Conclusion

In conclusion, this research presents a methodology that provides both an overall
and detailed understanding of users’ opinions towards ERP systems. It allows for an
initial estimate of the overall performance of the ERP as well as general evaluations
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Fig. 3: Production supervisor model results

for key subsystems that are seen as affecting the current level of performance. This
is followed up by examining those specific ERP features that are most influential
in affecting each of the subsystems. Our approach to developing models and survey
structures resulted in very satisfactory results in terms of internal consistency and
validity of our results. We believe this approach can be extended to international
environments and different industries where research findings will find immediate
applicability.

An important contribution of this research comes from the design and application
of the survey instrument in a supply chain operations context. To our knowledge this
research is the first attempt to gage the satisfaction with ERP systems by managers in
specific operational roles. Other research streams have only tried to measure overall
user satisfaction, primarily among financial and corporate executive management.
By focusing on the managers responsible for the daily production operations of the
enterprise, we seek to understand how well the technology solves the problems faced
by these managers and offer insight into ways the technology can be improved.
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Table 6: Utilization of reporting and analysis tools by function

Reporting and analysis tool
SpreadSheet ERP Paper Phone Manf. ex. Other Adv. plan.

Plant managers
Cost controls 76.9 61.5 38.5 23.1 20.5 11.7 6.4
Facilities & maintenance 64.9 23 33.8 20.3 14.9 24.4 2.7
Inventory 70.4 71.1 25.9 23.5 24.7 8.4 6.2
Labor & personnel 69.9 29.1 45.2 20.5 9.6 24.9 1.4
Manufacturing 77.1 71.1 39.8 36.1 16.9 12 8.4
Reporting 78.1 64.4 42.5 19.2 24.7 14 6.8
Safety health & environ. 71.6 10.8 25.7 50 8.1 18 1.4

Averages 72.7 47.3 35.9 27.5 17.1 16.2 4.8
Production supervisors
Cost controls 48.7 52.6 25.6 11.5 19.2 18.1 2.6
Inventory 52.4 73.8 23.8 25 26.2 14.4 11.9
Labor & personnel 50.6 40.5 32.9 16.5 10.1 30.6 2.5
Manufacturing 70.1 69 13.8 28.7 33.6 12.2 35.6
Reporting 63.6 57.1 23.4 13 26 22.1 5.2

Averages 57.1 58.6 23.9 18.9 23.0 19.5 11.6

There is no clear answer yet to the question of whether ERP systems effectively
meet the needs of supply chain operations. While users are satisfied with some of
the functionalities, they are not as happy with others. To understand shortcomings
in a way that will be helpful to both developers and users of such software, detailed,
functional role-based analysis is a viable approach. Our results provide meaningful
information to software vendors as well as to practitioners in assessing their experi-
ence within their particular environment. Further research in different professional
roles, such as quality or project managers, would extend the understanding of use-
fulness of ERP systems can be conducted to increase insights in ERP effectiveness.
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Plant Manager Survey Questions

Manufacturing “Our current information system is an effective tool to:”
MF-01 Prepare production plans to meet demand forecast/customer orders
MF-02 Track the $ volumes shipped from my plant
MF-03 Track demand versus volumes shipped
MF-04 Track deviations from on-time delivery targets
MF-05 Project capacity issues (too much/too little) in the near future
MF-06 Track product yields
MF-07 Prepare/contribute to Sales & Operations Planning
MF-08 Track planned production output versus actual production output
MF-09 Track manufacturing lead times
MS-01 Monitor production activities in general

Inventory “Our current information system is an effective tool to:”
IF-01 Monitor the $ value of inventories
IF-02 Monitor inventory turns
IF-03 Monitor inventory quantities on hand
IF-04 Project inventory issues (too much/too little) in the near future
IF-05 Monitor variances in raw material inventory targets
IF-06 Monitor variances in work-in-process inventory targets
IF-07 Monitor variances in finished goods inventory targets
IS-01 Monitor inventory metrics in general

Health, safety & env. “Our current information system is an effective tool to:”
SF-01 Track environment-related metrics in my plant
SF-02 Track the Recordable Incident Rate in my plant
SF-03 Monitor plant operations to ensure conformance to environmental emission standards
SF-04 Monitor the status of corrective actions related to Safety Health & Environmental issues
SS-01 Monitor Safety, Health & Environmental metrics in general

Cost control “Our current information system is an effective tool to:”
CF-01 Monitor variances from the budget
CF-02 Track cost metrics for operations in real time
CF-03 Track product costs
CF-04 Monitor labor cost metrics
CF-05 Monitor purchased material costs
CF-06 Monitor personnel costs
CF-07 Monitor maintenance costs
CF-08 Monitor utility costs in my plant
CF-09 Monitor variations from the capital budget
CF-10 Plan future budgets
CS-01 Track costs that are of interest to me in real-time

Facilities “Our current information system is an effective tool to:”
FF-01 Track equipment failure rates
FF-02 Monitor the maintenance schedule on major equipment
FF-03 Track asset utilization
FF-04 Track downtimes on major equipment
FS-01 Monitor facilities- and maintenance-related activities in general

Labor & personnel “Our current information system is an effective tool to:”
LF-01 Monitor training requirements in my plant
LF-02 Monitor number of hires and fires in my plant
LF-03 Provide me with the information to carry out performance evaluations for my personnel
LF-04 Monitor employee attendance/absence
LF-05 Track corrective action notices
LF-06 Track personnel resources and availability in my plant
LS-01 Track personnel-related information in general

Reporting “Our current information system is an effective tool to:”
RF-01 Report on Safety, Health & Environment-related metrics
RF-02 Report on facilities & maintenance-related metrics
RF-03 Report on production-related metrics
RF-04 Report on cost metrics
RF-05 Report on labor and personnel metrics
RS-01 Report on all the key performance metrics for my plant
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General
RS-02 I can easily generate reports using the current information system
OS-01 The current information system is an effective tool that supports me in performing my

tasks and fulfilling my responsibilities
MS-02 I can easily monitor manufacturing activities in my plant using the current information

system
LS-02 I can easily monitor personnel activities in my plant using the current information system
SS-02 I can easily monitor Safety, Health & Environmental activities using the current informa-

tion system
IS-02 I can easily monitor inventory-related metrics in my plant using the current information

system
CS-02 I can easily monitor cost metrics using the current information system
FS-02 I can easily monitor facilities and maintenance activities using the current information

system
OS-02 The current information system supports me very well in the management of my plant
OS-03 I am very happy with the planning tools I have in my current information system

Production Supervisor Survey Questions

Manufacturing “Our current information system is an effective tool to:”
MF-01 Provide all the information I need (such as open orders, inventory positions, available capacity,

etc.)
MF-02 Make changes to the current production schedule
MF-03 Show the impact of schedule changes on critical operational metrics (such as materials, due

dates, capacity, etc.)
MF-04 Monitor open orders and their progression on the shop floor
MF-05 Monitor the actual production output versus the planned production output in a given week
MF-06 Monitor production variations from the planned product mix
MF-07 Monitor variations in material usage from the standards in the routings
MF-08 Monitor variations in labor hours from the standards in the routings
MF-09 Monitor variations in machine hours from the standards in the routings
MF-10 Monitor actual lead times versus planned lead times
MF-11 Monitor the capacity of critical resources and incorporating capacity constraints into the pro-

duction schedule
MF-12 Monitor variations in planned versus actual process steps on a customer order
MF-13 Track whether completed orders are shipped on time
MF-14 Provide component visibility and traceability when needed
MF-15 Track machine utilizations in my area of responsibility
MF-16 Track labor absorption hours based on work orders in my area of responsibility
MF-17 Plan downtimes and incorporate this information into the production schedule
MF-18 View equipment maintenance/calibration schedules
MF-19 Track product yields in my area of responsibility
MF-20 Track scrap rates in my area of responsibility
MS-01 Track production information in general

Inventory “Our current information system is an effective tool to:”
IF-01 Monitor material shortages that may affect scheduled production
IF-02 Monitor finished good inventory levels
IF-03 Monitor work-in-progress (WIP) inventory levels
IF-04 Monitor purchased material levels
IF-05 Monitor deviations from inventory targets
IS-01 Track material- and inventory-related information in general

Labor & personnel “Our current information system is an effective tool to:”
LF-01 Provide the information necessary to carry out performance evaluations for the personnel under

my supervision
LF-02 Track the availability of personnel resources in my area of responsibility
LF-03 Monitor shift turnovers in my area of responsibility
LF-04 Track training requirements in my area of responsibility
LF-05 Monitor employee attendance/absence in my area of responsibility
LF-06 Track corrective action notices in my area of responsibility
LS-01 Track my personnel metrics in general
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Cost control “Our current information system is an effective tool to:”
CF-01 Track training costs in my area of responsibility
CF-02 Track utility consumption in my area of responsibility
CF-03 Track overhead costs in my area of responsibility
CF-04 Track unit production costs in my area of responsibility
CF-05 Track deviations from operational cost metrics in my area of responsibility
CF-06 Track personnel and labor costs in my area of responsibility
CF-07 Track variations from budget in my area of responsibility
CF-08 Track costs that are of interest to me in real-time
CS-01 Monitor cost metrics in my area of responsibility in general

Reporting “Our current information system is an effective tool to:”
RF-01 Report on cost metrics in my area of responsibility
RF-02 Report on labor metrics in my area of responsibility
RF-03 Report on production metrics in my area of responsibility
RF-04 Report on inventory metrics in my area of responsibility
RS-01 Report on all the performance metrics that fall under my area of responsibility

General
RS-02 The current information system allows me to easily and effectively generate reports
OS-01 The current information system is an effective tool that supports me in performing

my tasks and fulfilling my responsibilities
MS-02 I can easily monitor production metrics in my area using the current information

system
LS-02 I can easily monitor personnel activities in my area of responsibility using the current

information system
IS-02 I can easily monitor inventory metrics using the current information system
CS-02 I can easily monitor costs in my area of responsibility using the current information

system
OS-02 The current information system supports me very well in the supervision of produc-

tion in my area of responsibility
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Abstract There have been a number of studies that indicate that analysts recom-
mendations are superior to other forecasts, such as those by time-series models, and
add economic benefit, adjusted for transaction costs, to clients who first receive and
then use analysts’ forecasts. There is also academic literature documenting the use
of accounting information in valuing firms by analysts and others, the use of finan-
cial information from other sources than the firm itself by analysts, the impact of
management guidance on decisions made by analysts, and the concept of herd be-
havior among analysts. The majority of studies about analysts have used sell-side
analyst data to reach their findings. However, there has been little research involving
buy-side analysts, analysts who are employed by institutional investors to provide
stock purchase recommendations to their employers for internal investment deci-
sion making purposes. The research there has studied investments by institutional
investors, many of which employ buy-side analysts. The purpose of this study is to
add to the literature by investigating what information buy-side analysts use in arriv-
ing at their stock investment recommendations. This study also investigates whether
or not buy-side analysts are predominantly influenced by the information they re-
ceive from publicly available accounting data, other available public information,
other analysts or management guidance. The data for this investigation is being ob-
tained from a survey of buy-side analysts. A list of 130 analysts was prepared and
asked to take the survey. The use of a survey to gather the data was consistent with
the use in prior studies. The PLS approach to structural equation analysis was used
to assess the measurement model because it can be used for theory confirmation and
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suggest possible relationships, and because it is more suitable for prediction since
it assumes that all measured variance can be explained in a study. The SEM-based
method has been described as a coupling of two traditions: an econometric per-
spective focusing on prediction and a psychometric emphasis that models concepts
as latent (unobserved)variables that are indirectly inferred from multiple observed
measures (alternately termed as indicators or manifest variables). This method al-
lows for the performance of path analytic modeling and has been referred to as
a second generation of multivariate analysis. The results of this study further the
academic literature concerning analysts by investigating what information buy-side
analysts use to arrive at their overall stock investment recommendations and by the
use of the PLS approach.

Key words: Buy-side analysts, Sell-side analysts, Analysts stock investment rec-
ommendations, Structural equation modeling, Partial least squares

1 Introduction

Our global financial market has created a need for information about firms that will
allow us to minimize the risk associated with investing in them. Financial analysts
are used to fill that need [1, 8, 16, 18, 26, 27, 33]. Financial analysts are employed by
brokerage houses which sell stocks and mutual funds, and institutional buyers (such
as the aforementioned mutual funds, retirement plans, insurance policies and pen-
sion plans) who hire their own “proprietary” financial analysts. Although both buy-
side analysts and sell-side analysts issue financial (earnings) forecasts and buy/sell
recommendations on publicly traded firms, their clients are different [14, 23].

Sell-side analysts are employed by firms that “sell” securities and investment ad-
vice, e.g. brokerage firms. Sell-side analysts issue publicly available earnings fore-
casts and stock purchase recommendations to their firm’s customers. These forecasts
and stock purchase recommendations can be found in any number of sources that
report financial information such as the Wall Street Journal, Yahoo Financial and
the I/B/E/S data base.

On the other hand, buy-side analysts are employed by companies that “buy” secu-
rities for internal investment decision making purposes, namely to earn profits from
investing in security markets. Buy-side analysts are employed to provide forecasts,
offer investment advice and make stock purchase recommendations exclusively for
their employers. Their private forecasts and stock investment recommendations sel-
dom become publicly known and many are very secretive about the “private infor-
mation” they use to arrive at their company’s investment decisions.

As a result of this disproportionate availability of information with regard to
sell-side versus buy-side analysts, more academic research has been conducted sur-
rounding the behavior of sell-side analysts (especially given the availability of data
through data bases such as I/B/E/S), as opposed to the behavior of buy-side ana-
lysts. Thus, there appears to be a real void in the academic literature regarding the
behavior of buy-side financial analysts.
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The purpose of this study is to determine the relative importance of different
information sources on buy-side analysts’ stock purchase recommendations. Repre-
sentational faithfulness will also be evaluated in terms of whether or not it has an
impact on the relative importance assigned to a particular information source. The
specific research questions addressed in this study were:

• What sources of information do buy-side analysts use to make their stock rec-
ommendation?

• Do buy-side analysts find the sources of information they use to make their
stock recommendation to be accurate and unbiased?

• Is a buy-side analyst’s attitude towards a company affected by the sources of
information used?

• Does the degree to which a buy-side analyst trusts management of a firm affect
their attitude or stock purchase recommendation?

• Does a buy side analyst’s attitude toward a firm influence their stock purchase
recommendation for that firm?

The study is significant in the sense that it adds to the accounting literature by in-
vestigating to what extent buy-side analysts’ overall stock investment recommenda-
tions are influenced by various sources of information. The sources that we evaluate
in this study are the information buy-side analysts receive from publicly available
accounting data, other available public information, other analysts, and management
guidance, as well as trust of management.

2 Research Methodology

We first examined the academic literature to develop the research models and survey
instrument. A survey [4, 10, 30, 31] was then developed and sent to known buy-side
analysts. We received 135 usable responses which were then evaluated using the
Partial Least Squares methodology.

The selection of the subjects for this study (i.e., buy-side analysts currently em-
ployed by institutional investors) was guided by the academic literature. The litera-
ture finds that institutional investors (e.g., employers of buy-side analysts) prefer to
own stock in large firms with high visibility [2, 5, 11, 12, 19, 22, 35].

A list of 703 buy-side analysts was compiled from a number of sources that met
this criteria, primarily from analyst meetings sponsored by public companies and
from referrals (from Investor Relations Departments and other buy-side analysts).
The list was then culled to eliminate bad email addresses and each buy-side analyst
was then contacted to verify if they were still buy-side analysts and asked if they
would be willing to participate in a survey. We had response from 227 analysts. One
hundred forty analysts participated in the survey. Of these, 117 identified themselves
as “buy side” and gave complete sets of data.

The study was anonymous and the participants received no compensation. The
identity of the participants is not known but the survey tool gave an identifying
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number to eliminate duplications/multiple answers by the respondents. Some re-
spondents did enclose information on how to send them copies of the results, but
these participants are not disclosed on any reports or to any parties by the researcher.
Others sent emails indicated they had responded.

The sample size needed for this experiment, calculated to be 60, was determined
based on the amount of power needed given the relationships that were described
earlier in this section. The actual sample of 135 (18 “sell side” and 117 “buy-side”)
surpasses this minimum requirement [7, 9, 15]. Three main models (and a total of
seven models) were then developed to test the data received from the survey.

2.1 Development of the Models

As key areas for research were identified by the literature review, definitions were
developed, each definition was decomposed into component parts (the key facets of
the question) in order to understand the underlying meaning, and several questions
were developed in order to select those that had the most congruence/meaning. The
models used in this study were created using SEM and this facet based approach to
develop the questions that were asked in the survey.

The literature confirms that analysts make financial forecasts, provide investment
advice and make stock recommendations [29] and that sell-side analysts is usually
provided to major investors at no cost [14]. Based on this evidence, we began with
the “Analyst Stock Recommendation.” We defined this variable as the “extent or
degree to which an analyst would make a recommendation involving the purchase
or sale of a company’s common stock” and then developed the questions for this
variable as well as its reflective and formative variables.

The literature next led to another potential direct relationship based on the ques-
tion of whether or not the buy-side analyst formulates his or her stock recommen-
dation based on these variables or if the relationship is one between the buy-side
analyst and his/her attitude towards the firm he/she is analyzing [14]. We defined
“attitude” as the “affective evaluation an analyst has towards this firm’s financial
performance” and developed the questions for this variable as well as for its reflec-
tive and formative variables.

The literature identifies several sources of information that sell-side analysts use
to arrive at their stock recommendation including publicly available accounting data,
other publicly available information, management guidance, and the opinions of
other analysts [10, 14, 24, 32, 36, 37, 40].

We next defined each of these sources and developed the questions for each main
variable as well as its reflective and formative variables (including source questions)
to help address the variables of information analysts use to make their decisions.
“Trust of management” was defined based on evidence in the literature that the
quality of a company’s financial reports affect the way analysts view it and questions
were developed for this variable [3, 5, 21, 25, 39, 41].
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The question of representational faithfulness was also an area for contribution
according to the literature and included in our research instrument [13, 14, 34]. We
defined “representational faithfulness” and developed the questions for this variable
as well as the reflective and formative variables (including source questions) for
three of the sources of information identified in the literature (publicly available
accounting data, other publicly available information and management guidance).

As discussed earlier, there is ample academic evidence to suggest that analysts
use publicly available accounting data, other publicly available information, and,
management guidance, and are influenced by other analysts’ opinions and their trust
of management. However, there is no consensus on the “usefulness” (e.g., degree to
which an analyst uses each of them in their decision making process) of each source,
even though such a relationship is purported [36]. So, we next developed questions
for the “Usefulness” variable for each of the three sources of information (publicly
available accounting data, other publicly available information, and, management
guidance). Finally, we defined “evaluation activity” based on the potential for earn-
ings management and developed the questions for this variable [29].

Additional survey questions were developed based on concerns raised by the
academic literature which suggests that the size of the firm a sell-side analyst works
for, the number of companies they follow, their experience level and the availability
of adequate resources can affect an analyst’s stock recommendation. Three Models
were developed: the Stock Purchase Recommendation Model, the Attitude Model
and the Full Model.

The Stock Purchase Recommendation Model was developed based upon the find-
ings in the academic literature that suggest that financial analysts use publicly avail-
able accounting data, other publicly available information, management guidance,
the opinions of other financial analysts and their trust of management as a basis for
the recommendation (buy, hold or sell) they give on a stock purchase decision (see
Fig. 1).

It was then modified (The Stock Purchase Recommendation Model with Interac-
tion Effects) to test if Representational Faithfulness and Usefulness (Degree of Use)
of these sources is important in this process (see Fig. 2).

The Attitude Model was developed based upon the findings in the academic lit-
erature that suggests that financial analysts’ attitudes may influence their stock pur-
chase recommendation. This model tested the effect that publicly available account-
ing data, other publicly available information, management guidance, the opinions
of other financial analysts and their trust of management has on their attitude to-
wards the organization about which they are making a stock purchase recommenda-
tion (see Fig. 3).

It too was then modified (The Attitude Model with Interaction Effects) to test
if representational faithfulness and usefulness (Degree of Use) of these sources is
important in this process (see Fig. 4).

By examining both models, we tested to see if the information a buy-side analyst
receives from these sources (publicly available accounting data, other publicly avail-
able information, management guidance, the opinions of other financial analysts
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Fig. 1: Stock purchase recommendation model

Fig. 2: Stock purchase recommendation model with interaction effects
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Fig. 3: Attitude model

and the analyst’s trust of management) have similar or different influence on his/her
stock purchase recommendation or his/her attitude towards the company.

Our third model, the Full (Combined) Model, tested to see if attitude did indeed
have an effect on an analyst’s stock purchase recommendation. It was tested in three
ways. First, we added “attitude” as a construct to the Stock Purchase Recommenda-
tion Model (see Fig. 5).

Next we tested it by adding “attitude” as a construct to the Stock Purchase Rec-
ommendation Model with Interaction Effects (see Fig. 6).

Finally, we took the Stock Purchase Recommendation Model and added the At-
titude Model as a construct to see the extent of the effect that the constructs the
academic literature identified have on the stock purchase recommendation decision
(see Fig. 7).

2.2 Survey Design

As was previously discussed, the structural model was developed after an extensive
review of the existing academic literature. Key research areas were identified, con-
structs were established, and key questions were developed based on the key facets
of each construct.
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Fig. 4: Attitude model with interaction effects

The study included the appropriate use of negation in some cases, and asked
questions several ways to better measure each construct. The items were measured
using mostly seven-point Likert-type scales (with anchors such as “strongly dis-
agree” to “strongly agree” and measurements ranging from “−3” to “+3” where
“0” was neutral) and some eleven-point Likert-type scales (with anchors such as
“pessimistic” to “optimistic” with a range of “0” to “+10”). A pilot study involving
subject matter experts (including buy-side analysts) was conducted to clarify ques-
tions and to measure consistency and validate these items. Some changes in wording
were made and some questions were eliminated as a result of the pilot study in order
to refine the survey instrument.

The methodological approach used to test the relationships involved a survey
that was accessed on the Web. A number of papers have been written about the
use of Web based surveys. Recommendations made in this academic literature were
incorporated into the survey design, especially as it pertained to increasing survey
response and the development of the survey tool. Kaplowitz et al., state that “For
special populations that regularly use the Internet, the Web has been found to be a
useful means of conducting research [28].”

Selection of the relationships that were tested was appropriate since each was
based on evidence of such relationships in the academic literature among financial
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Fig. 5: Full (combined) model

Fig. 6: Combined model
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Fig. 7: Combined model with interaction effects

analysts. In addition, the survey questionnaire was administered to buy-side ana-
lysts, a group whose use of various sources of information (the constructs in this
study) is not public information.

2.3 Method of Analysis

The PLS approach to structural equation analysis was employed to assess the mea-
surement model because it can be used for theory confirmation and to suggest pos-
sible relationships. It is also more suitable for prediction since it assumes that all
measured variance can be explained in a study [6, 7, 9]. PLS utilizes a principal
component-based approach, thus minimizing the required sample size. PLS only re-
quires a sample of 60 observations based on the fact that the largest construct in this
study had 6 items (10× 6), thus making it an ideal choice to assess the model. The
number of items is determined by the greater of the number of measures forming a
construct or the number of constructs it requires to predict the dependent construct.
In contrast, if we were to use a covariance based SEM model, a sample of 280 (28
predictors times 10) would be required.
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The analysis of data was completed by first assessing the measurement model
and then assessing the structural model. In this case, significant tests were assessed
using boot strap analysis with 1,000 re-samples. No assumptions of normality were
made in accordance with the partial least squares (PLS) approach used in this study.

Individual item loadings, internal consistency and discriminant validity were
assessed for the measurement model using PLS. The structural model and our hy-
potheses were tested by examining the path coefficients and their respective statis-
tical significance. The predictive power of the model was based on the explained
variance in the dependent constructs.

3 Results

A total of 703 analyst names and email addresses were collected over the last 8 years
from professional meetings and associations. Emails were sent to these analysts
asking if they would be willing to participate in a survey. Of the 227 responses, 135
gave complete sets of data, 18 of whom classified themselves as “sell-side” analysts
and 117 as analysts analyzing stocks for their own portfolios (“buy-side analysts”).

3.1 Model Evaluation

The 117 completed questionnaires were examined for outliers. A frequency Test was
run using SPSS that examined the raw data file for skewness, kurtosis and outliers.
No significant outliers were identified although there were occasions where one
or two analysts selected an extreme value in answer to a specific survey question.
Since none of the observations appeared to be extreme, all responses were used for
analysis.

3.2 Reliability Assessment

Individual item loadings and internal consistency of reliabilities were examined as a
test of reliability. Consistent with the academic literature, the reliability of the con-
structs exceeded 0.7 in all but one of the constructs (use of other publicly available
information, which had a 0.678 reliability) [38].

A second test of reliability was then performed using the Composite Reliability
Index. This test is considered to be much more accurate than Cronbach’s Alpha.
According to Chin, “use of this formula, which does not assume equal loadings or
error terms among the measures, typically provides more accurate estimates of the
composite reliability [7].” All of the composite reliabilities exceeded the minimum
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acceptable value of 0.70 including other publicly available information with a 0.862
Composite Reliability [20].

3.3 Convergent and Discriminant Validity Assessment

Convergent validity is shown when the t-values of the Outer Model Loadings are
above 1.96. The t-values of the loadings are, in essence, equivalent to t-values in
least-squares regressions. Each measurement item is explained by the linear regres-
sion of its latent construct and its measurement error [17]. The t-values in all the
convergent validity assessments are much greater than 1.96 indicating high conver-
gent validity.

Discriminant validity was assessed in two ways: one test is based on how well
the items load on their own construct as compared to other constructs in the model,
and, a second based on the fact that the average variance shared between the con-
structs and their measures is greater than the variance shared between the constructs
themselves. The first test of discriminant validity requires that loadings should be
high and cross-loadings should be low compared to the loadings. The individual
cross-loadings of the items all exceeded 0.82 and the factor cross-loadings of all the
items shared by the constructs were low, showing clear discriminant validity [7].
The second test of discriminant validity is to show that the average variance ex-
tracted (AVE) for each construct is greater than the square of the correlations of that
construct to all the others in the model [7, 15, 17], which was true. Thus, both ap-
proaches demonstrate discriminant validity; results of the other models tested gave
similar results.

3.4 Structural Model Evaluation

Each structural model was tested by examining the path coefficients (and their re-
spective statistical significance) and the r2 to determine the predictive power of the
model, based on the explained variance in the dependent constructs. Each hypothesis
was tested using PLS Graph 3.0. Path coefficients, along with their degree of sig-
nificance based on T-values, were calculated using a boot-strapping procedure. The
latent scores derived from PLS Graph were then loaded into SPSS to further test the
significance of the path coefficients. SPSS was then used to calculate the interaction
terms. The PLS coefficients are different from the SPSS coefficient combination of
the interactions, rounding and the fact that the results of the boot-strapping is based
on an average of 1,000 re-samples.

The significance of the path (betas) and the adjusted r2 was used to measure
significance in each model. Each was then evaluated by first looking at the main ef-
fect model without interactions and then by looking at it with interactions included.
Table 1 contains a summary of all the findings for the seven models.
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3.4.1 Model 1: Stock Purchase Recommendation

The r2 of the structural model used to measure the main effects of the Stock Pur-
chase Recommendation Model is 0.398 with an adjusted r2 of 0.371. As can be
seen in Fig. 8, two significant effects were found: use of publicly available account-
ing data has a path of 0.393 with a significance of 0.000, and, opinions of other
analysts has a path of 0.258 with a significance of 0.002.

Fig. 8: Stock purchase recommendation model path coefficients

3.4.2 Model 2: Stock Purchase Recommendation with Interaction Effects

The r2 of the structural model used to measure the Stock Purchase Recommendation
Model with Interaction Effects has more explanatory power than the first model. The
r2 is 0.527 with an adjusted r2 of 0.434. As can be in Fig. 9, three significant main
effects and one interaction effect are found:

• Publicly available accounting datas path increases from 0.393 to 0.497 with a
significance of 0.000;

• Degree of usage of publicly available accounting data has a path of 0.175 with
a significance of 0.035;
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• The other analysts opinions path coefficient decreases from 0.258 to 0.197 with
a significance of 0.040 (compared to 0.002 in the main effects model); and,

• Trust of management becomes significant with a path coefficient of 0.172 and a
significance of 0.097.

Fig. 9: Stock purchase recommendation model with interaction effects path coeffi-
cients

3.4.3 Model 3: Attitude Model

The r2 of the structural model used to measure the Attitude Model is 0.642 with an
adjusted r2 of 0.626. As can be seen in Fig. 10, three significant main effects are
found in the Attitude Model (main effects model), the first two of which are similar
to the Recommendation Model (main effects model):

• Use of publicly available accounting data has a path of 0.450 with a significance
<0.001;

• The opinions of other analysts has a path of 0.195 with a significance of 0.002;
and,

• Trust of management is significant in this model with a path coefficient of 0.383
and a significance of <0.001.
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Fig. 10: Attitude model path coefficients

3.4.4 Model 4: Attitude Model with Interaction Effects

The r2 of the structural model used to measure the Attitude Model with Interaction
Effects indicates that it has slightly more explanatory power than the Attitude Model
(main effects model) with an r2 of 0.700 (compared to 0.642) and an adjusted r2

of 0.641 (compared to 0.626). As can be seen in Fig. 11, the three significant main
effects found in the Attitude Model (main effects model) remain significant although
the path coefficients have changed:

• Use of publicly available accounting data has a path of 0.437 with a significance
<0.001;

• The opinions of other analysts has a path of 0.194 with a significance of 0.011
(versus 0.002); and,

• Trust of Management is significant in this model with a path coefficient of 0.334
and a significance <0.001.

Three additional interaction effects are found that are significant:

• The interaction of degree of usage of publicly available accounting data and
use of publicly available accounting data has a path coefficient of 0.192 and a
significance of 0.005;

• The interaction of degree of usage of management guidance and management
guidance has a path coefficient of 0.151 and a significance of 0.072; and,
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• The interaction of representational faithfulness of management guidance and
management guidance has a path coefficient of −0.186 and a significance of
0.015.

The significant main effects and significant interaction effects are shown on
Fig. 11.

Fig. 11: Attitude model with interaction effects path coefficients

3.5 The Full and Combined Models

In order to provide better insight, an analysis of the effect that attitude has on the
stock purchase recommendation is decomposed into three models:

1. The first model tested, the Combined Model, adds attitude to the Stock Purchase
Recommendation Model as a variable to see what effect, if any, attitude would
have on the stock purchase recommendation and on the influence of the other
independent variables in the Stock Purchase Recommendation Model;

2. The second model tested, the Combined Model with Interaction Effects, adds
attitude to the Stock Purchase Recommendation Model with Interaction Effects
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as a main effect, again, with the intent of examining if a buy-side analyst’s
attitude has any significant effect on the stock purchase recommendation and, if
so, what effect it would have on the other independent variables in the model;
and,

3. The Full Model, which combined the Stock Purchase Recommendation Model
with the Attitude Model, and treated attitude as the sixth independent variable.
The variables influencing attitude were then treated as moderating variables, al-
lowing us to investigate the effects that publicly available accounting data, other
publicly available information, management guidance, other analysts’ opinions
and trust of management had on the stock purchase recommendation as main
effects and on attitude as moderating effects.

3.5.1 Model 5: The Combined Model

As was just mentioned, the first model we analyzed was the Combined Model. The
r2 of the Combined Model is 0.569 (compared to 0.398 for the Stock Purchase
Recommendation Model) with an adjusted r2 of 0.546 (vs. 0.371), indicating that
the model has better explanatory power than the Stock Purchase Recommendation
Model.

Interestingly enough, only one of two main effects found in the Stock Purchase
Recommendation Model was still present in the Combined Model albeit at a lower
significance level—the opinions of other analysts had a path of 0.124 with a sig-
nificance of 0.089 (see Fig. 12). The beta coefficient of the other main effect that
is present, publicly available accounting data, drops from 0.383 to 0.083 and its
significance level decreases from a significant <0.001 to 0.380.

Two new significant main effects were found:

• Trust of management has a negative path coefficient of −0.175 with a signifi-
cance of 0.032; and,

• The main effect with the largest significance is attitude with a path coefficient
of 0.685 and a significance level of <0.001.

The negative influence of trust of management on the stock purchase recommen-
dation is interesting. One might infer that if management is truly trustworthy, there
may be no opportunity to profit from information asymmetries. In other words, buy-
side analysts might believe that trustworthy management would be too open with
information (eliminating any asymmetry of information that could lead to an ana-
lyst finding private information that could result in abnormal profits) or perhaps fear
that trustworthy management would be unwilling to make aggressive decisions that
would result in higher reported earnings.
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Fig. 12: Combined model path coefficients

3.5.2 Model 6: Combined Model with Interaction Effects

The next model we examined was the Combined Model with Interaction Effects
(shown in Fig. 13). The r2 of the structural model used to measure the Combined
Model with Interaction Effects (the Stock Purchase Recommendation Model with
Interaction Effects and Attitude added) is considerably higher (e.g., has much bet-
ter explanatory power) than that of the original Stock Purchase Recommendation
Model with Interaction Effects: 0.659 (compared to 0.527) with an adjusted r2 of
0.587 (vs. 0.434).

There is one similarity and two differences in the significant main effects and
interaction effects found between the Combined Model and the Combined Model
with Interaction Effects (see Fig. 14).

• Attitude remains as the main effect with the largest significance with a path
coefficient of 0.679 and a significance level <0.001;

• Publicly available accounting data becomes significant again (it has statistical
significance in both of the Stock Purchase Recommendation Models and the
two Attitude Models, but not in the Combination Model) with a path coefficient
of 0.210 and a significance of 0.057; and,

• Degree of usage of publicly available accounting data becomes significant for
the first time in any of our models with a path coefficient of 0.133 and a signif-
icance of 0.041.

It is interesting to note that trust of management loses significance with a nega-
tive path coefficient of−0.082 and a significance level of 0.401 in the Combination
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Fig. 13: Combined model with interaction effects

Model with Interactions Effects after being statistically significant in the Stock Pur-
chase Recommendation Model with Interaction Effects, both Attitude Models and
the Combined Model.

3.5.3 Model 7: The Full Model

We next performed an analysis of the Full Model. The r2 of the Combined Main
Effects Model is 0.565 (compared to 0.569 for the Combined Model and 0.659 for
the Combined Model with Interaction Effects) with an adjusted r2 of 0.541 (versus
0.546 and 0.587, respectively). Although its “goodness of fit” is less than the two
Combination Models, it still has high explanatory power. Three significant main
effects and three significant moderating effects are found in the Full Model (see
Fig. 15):

• The largest significant effect is attitude with a 0.684 path coefficient and a sig-
nificance <0.001 (this is consistent with the earlier Combination Models which
have beta coefficients of 0.685 and 0.679, respectively, both at a significance
level <0.001);

• Trust of management has two significant effects:
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Fig. 14: Combined model with interaction effects path coefficients

1. A main effect negative path coefficient of −0.179 with a significance of
0.030 when regressed against stock purchase recommendation; and,

2. A moderating effect positive path coefficient of 0.383 with a significance
<0.001 when regressed against attitude.

• Other analysts’ opinions also has two significant effects:

1. A main effect positive path coefficient of 0.124 with a significance of 0.091
when regressed against stock purchase recommendation; and,

2. A moderating effect positive path coefficient of 0.195 with a significance
of 0.002 when regressed against attitude.

• Publicly available accounting data does not have a significant main effect
when regressed against the stock purchase recommendation dependent variable
(0.083 with a 0.383 level of significance) but does have a moderating effect
when regressed with attitude (with a path coefficient of 0.450 and a significance
level <0.000).
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Fig. 15: Full model path coefficients

4 Discussion and Conclusion

The best interpretation of these findings is that a buy-side analyst bases his/her deci-
sions to recommend purchase of a stock largely based on his/her attitude towards a
company and that attitude is influenced largely by publicly available accounting data
and trust of management, as well as what other analysts he/she respects say about
the company. The empirical analysis of the data provides a number of interesting
insights. Specifically:

• Our most interesting finding is that trust of management plays an important
role in both a buy-side analyst’s attitude towards an organization and in his/her
decisions regarding purchasing, holding or selling a security. Specifically:

– There is evidence that there is a positive, significant relationship between a
buy-side analyst’s attitude towards a stock and trust of management, and

– A lesser weighted but still significant negative relationship between a buy-
side analyst’s stock purchase recommendation and trust of management.

This implies that while buy-side analysts may feel good about companies with
management they trust they are cautious about investing in firms run by trustworthy
management. An interesting side note is that while buy-side analysts do not consider
management guidance in their decisions, their contact with management does seem
to influence their trust of management.
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• Our second most interesting finding is that the independent variable that has the
greatest single effect on a buy-side analyst’s stock purchase recommendation is
the buy-side analyst’s attitude towards that company. In other words, based on
the findings of the models, all of which were found to have good explanatory
power, it appears that buy-side analysts base their buy or sell decisions of a
stock largely on their “gut feeling” (“attitude”) towards a company and that this
attitude is largely influenced by the publicly available accounting data, their
trust of management and the opinions of other analysts they respect about the
firm for which they are making a stock purchase recommendation.

• We also find that publicly available accounting data:

– Plays an important role in the buy or sell recommendation a buy-side ana-
lysts makes when attitude is not part of the equation but loses some of its
effect when attitude is added; and,

– Has a huge effect on the buy-side analyst’s attitude towards a company.

This leads us to conclude that while publicly available accounting data is con-
sidered in the stock purchase recommendation decision (direct impact), its largest
influence is an indirect one (on a buy-side analyst’s attitude towards the firm). It
should be noted that the degree of use/usefulness of publicly available accounting
data is also significant, leading us to conclude that buy-side analysts do use this
information.

• Finally, we find that other analysts’ opinions affects both the buy or sell rec-
ommendation and the attitude of buy-side analysts, and does so in a positive
way, implying that buy-side analysts are more likely to recommend purchase of
a stock if (other) analysts they trust are making similar recommendations (herd
behavior).
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